Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry.
نویسندگان
چکیده
Bipolar cells are the central neurons of the retina that transmit visual signals from rod and cone photoreceptors to third-order neurons in the inner retina and the brain. A dogma set forth by early anatomical studies is that bipolar cells in mammalian retinas receive segregated rod/cone synaptic inputs (either from rods or from cones), and here, we present evidence that challenges this traditional view. By analyzing light-evoked cation currents from morphologically identified depolarizing bipolar cells (DBCs) in the wild-type and three pathway-specific knockout mice (rod transducin knockout [Tralpha(-/-)], connexin36 knockout [Cx36(-/-)], and transcription factor beta4 knockout [Bhlhb4(-/-)]), we show that a subpopulation of rod DBCs (DBC(R2)s) receives substantial input directly from cones and a subpopulation of cone DBCs (DBC(C1)s) receives substantial input directly from rods. These results provide evidence of the existence of functional rod-DBC(C) and cone-DBC(R) synaptic pathways in the mouse retina as well as the previously proposed rod hyperpolarizing bipolar-cells pathway. This is grounds for revising the mammalian rod/cone bipolar cell dogma.
منابع مشابه
Rod-cone crossover connectome of mammalian bipolar cells.
The basis of cross-suppression between rod and cone channels has long been an enigma. Using rabbit retinal connectome RC1, we show that all cone bipolar cell (BC) classes inhibit rod BCs via amacrine cell (AC) motifs (C1-6); that all cone BC classes are themselves inhibited by AC motifs (R1-5, R25) driven by rod BCs. A sparse symmetric AC motif (CR) is presynaptic and postsynaptic to both rod a...
متن کاملMultiple pathways of inhibition shape bipolar cell responses in the retina.
Bipolar cells (BCs) are critical relay neurons in the retina that are organized into parallel signaling pathways. The three main signaling pathways in the mammalian retina are the rod, ON cone, and OFF cone BCs. Rod BCs mediate incrementing dim light signals from rods, and ON cone and OFF cone BCs mediate incrementing and decrementing brighter light signals from cones, respectively. The outputs...
متن کاملConnectivity map of bipolar cells and photoreceptors in the mouse retina
In the mouse retina, three different types of photoreceptors provide input to 14 bipolar cell (BC) types. Classically, most BC types are thought to contact all cones within their dendritic field; ON-BCs would contact cones exclusively via so-called invaginating synapses, while OFF-BCs would form basal synapses. By mining publically available electron microscopy data, we discovered interesting v...
متن کاملAdaptation-dependent changes of bipolar cell terminals in fish retina: Effects on overall morphology and spinule formation in Ma and Mb cells
We have investigated the effects of light and dark adaptation on the overall morphology of bipolar cell (BC) terminals in sublaminae a and b of the inner plexiform layer after labelling with Lucifer Yellow (LY) and PKC immunostaining using confocal laser scanning microscopy and serially sectioned material for electron microscopy. Three-dimensional reconstructed terminals showed marked adaptatio...
متن کاملReceptive fields of retinal bipolar cells are mediated by heterogeneous synaptic circuitry.
Center-surround antagonistic receptive field (CSARF) organization is the basic synaptic circuit that serves as elementary building blocks for spatial information processing in the visual system. Cells with such receptive fields converge into higher-order visual neurons to form more complex receptive fields. Retinal bipolar cells (BCs) are the first neurons along the visual pathway that exhibit ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 1 شماره
صفحات -
تاریخ انتشار 2010