Basal Levels of (p)ppGpp in Enterococcus faecalis: the Magic beyond the Stringent Response

نویسندگان

  • Anthony O. Gaca
  • Jessica K. Kajfasz
  • James H. Miller
  • Kuanqing Liu
  • Jue D. Wang
  • Jacqueline Abranches
  • José A. Lemos
چکیده

UNLABELLED The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system controlling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of (p)ppGpp is controlled by the bifunctional protein RSH (for "Rel SpoT homologue"; also known as RelA) and by the monofunctional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence. Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and pathways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were induced in the rsh relQ [(p)ppGpp(0)] strain, suggesting that a lack of basal (p)ppGpp places the cell in a "transcriptionally relaxed" state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp(0) strain substantiate the observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis. Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal (p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under balanced growth conditions. IMPORTANCE Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic options available to care providers. The stringent response (SR), mediated by the accumulation of two modified guanine nucleotides collectively known as (p)ppGpp, is a highly conserved stress response that broadly remodels bacterial physiology to a survival state. Given the strong correlation of the SR with the ability of bacteria to survive antibiotic treatment and the direct association of (p)ppGpp production with bacterial infectivity, understanding how bacteria produce and utilize (p)ppGpp may reveal potential targets for the development of new antimicrobial therapies. Using the multidrug-resistant pathogen Enterococcus faecalis as a model, we show that small alterations to (p)ppGpp levels, well below concentrations needed to trigger the SR, severely affected bacterial metabolism and antibiotic survival. Our findings highlight the often-underappreciated contribution of basal (p)ppGpp levels to metabolic balance and stress tolerance in bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State

As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detect...

متن کامل

ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria.

The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive...

متن کامل

ppGpp Controls Global Gene Expression in Light and in Darkness in S. elongatus.

The bacterial and plant stringent response involves production of the signaling molecules guanosine tetraphosphate and guanosine pentaphosphate ((p)ppGpp), leading to global reorganization of gene expression. The function of the stringent response has been well characterized in stress conditions, but its regulatory role during unstressed growth is less studied. Here, we demonstrate that (p)ppGp...

متن کامل

Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA.

The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, pathogenicity, and antibiotic tolerance. We show that the tetrameric small alarmone synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis is a sequence-specific RNA-binding protein. RelQ's en...

متن کامل

RelA inhibits Bacillus subtilis motility and chaining.

The nucleotide second messengers pppGpp and ppGpp [(p)ppGpp] are responsible for the global downregulation of transcription, translation, DNA replication, and growth rate that occurs during the stringent response. More recent studies suggest that (p)ppGpp is also an important effector in many nonstringent processes, including virulence, persister cell formation, and biofilm production. In Bacil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013