Analyzing developmental processes on an individual level using nonstationary time series modeling.
نویسندگان
چکیده
Individuals change over time, often in complex ways. Generally, studies of change over time have combined individuals into groups for analysis, which is inappropriate in most, if not all, studies of development. The authors explain how to identify appropriate levels of analysis (individual vs. group) and demonstrate how to estimate changes in developmental processes over time using a multivariate nonstationary time series model. They apply this model to describe the changing relationships between a biological son and father and a stepson and stepfather at the individual level. The authors also explain how to use an extended Kalman filter with iteration and smoothing estimator to capture how dynamics change over time. Finally, they suggest further applications of the multivariate nonstationary time series model and detail the next steps in the development of statistical models used to analyze individual-level data.
منابع مشابه
Some New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملApplication of TPM indicators for analyzing work time of machines used in the pressure die casting
The article presents the application of total productive maintenance (TPM) to analyze the working time indicators of casting machines with particular emphasis on failures and unplanned downtime to reduce the proportion of emergency operation for preventive maintenance and diagnostics. The article presents that the influence of individual factors of complex machinery maintenance (TPM) is ...
متن کاملThe Spatial Analysis of Time Series
In this paper, we propose a method of analyzing time series, called the spatial analysis. The analysis consists mainly of the statistical inference on the distribution given by the expected local time, which we define to be the spatial distribution, of a given time series. The spatial distribution is introduced primarily for the analysis of nonstationary time series whose distributions change o...
متن کاملTesting for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series
Surrogate data methods have been widely applied to produce synthetic data, while maintaining the same statistical properties as the original. By using such methods, one can analyze certain properties of time series. In this context, Theiler’s surrogate data methods are the most commonly considered approaches. These are based on the Fourier transform, limiting them to be applied only on stationa...
متن کاملAnalysis of Non-Stationary Time Series using Wavelet Decomposition
Abstract: The increased computational speed and developments in the area of algorithms have created the possibility for efficiently identifying a well-fitting time series model for the given nonstationary-nonlinear time series and use it for prediction. In this paper a new method is used for analyzing a given nonstationary-nonlinear time series. Based on the Multiresolution Analysis (MRA) and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental psychology
دوره 45 1 شماره
صفحات -
تاریخ انتشار 2009