The Development of New Tools for the Investigation of Protein Function Using Photo-reactive Unnatural Amino Acids
نویسنده
چکیده
Title of Document: THE DEVELOPMENT OF NEW TOOLS FOR THE INVESTIGATION OF PROTEIN FUNCTION USING PHOTO-REACTIVE UNNATURAL AMINO ACIDS. Bryan Jason Wilkins, Doctor of Philosophy, 2010 Directed By: Dr. T. Ashton Cropp, Department of Chemistry and Biochemistry Reported here is the direct synthesis and application of unnatural amino acids for the development of exploratory tools for protein studies. This work takes advantage of an expanded genetic code to extract a more precise chemical understanding of protein function with novel additions to the unnatural amino acid catalogue, as well as the expansion of techniques with previously developed compounds. The photochemical crosslinker, [D11]-p-benzoylphenylalanine (pBpa), is synthesized for isotopic labeling in proteins. When [D11]-pBpa is co-incorporated into protein with [D0]-pBpa it is a mass spectral tool for rapid and conclusive identification of crosslinked fragments. Following enzymatic digestion the fingerprint of M, M+ 11 is readily identified allowing for rapid peak identification and the determined site of crosslink formation with single amino acid accuracy. In a means to extract a level of spatiotemporal control over fluorescent labeling of protein, the photo-protected unnatural amino acid, o-nitrobenzyl cysteine (ONBC), is introduced to a small amino acid tag sequence CCPGCC. This tag is required and specifically binds the pro-fluorescent compound 5-bis(1,3,2-dithiasolan-2yl)fluorescein (FlAsH). This work takes advantage of the inability of FlAsH to bind the cysteine-tag motif in the presence of an ONBC mutation. The photo-protected amino acid is deprotected with light, affording natural cysteine and the successful binding of FlasH to the tetracysteine tag only following ultraviolet irradiation. Finally, fluorinated tyrosine derivatives are synthetically modified to contain photoprotecting groups, which act as a disguise during unnatural amino acid mutagenesis techniques. Fluorinated tyrosines are recognized by endogenous tyrosyl-tRNA synthetases and incorporated globally throughout a protein at tyrosine positions. To circumvent this problem the o-nitrobenzyl photo-protecting group is installed on the tyrosine derivatives 2-fluorotyrosine, 3-fluorotyrosine, and 2,6-difluorotyrosine. The directed evolution of an orthogonal amber-tRNA synthetase, specific for these unnatural amino acids, is performed, providing the translational machinery for sitespecific incorporation of these compounds. Following expression of protein with the protected tyrosine derivatives, protein exposed to ultraviolet irradiation subsequently loses the protecting group affording the site-specific incorporation of fluorinated tyrosine. Fluorinated tyrosines are introduced to the critical trysoine residue in the chromophore of super-folder green fluorescent protein to determine how the altered pKa affects its fluorescent properties. THE DEVELOPMENT OF NEW TOOLS FOR THE INVESTIGATION OF PROTEIN FUNCTION USING PHOTO-REACTIVE UNNATURAL AMINO ACIDS.
منابع مشابه
Metal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملMetal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملComparison of Essential and Non Essential Amino Acids in the Microbial Protein of Pleurotus Florida from the Lignocellulosic Wastes
Introduction: Cereal straws contain Cellulose, Hemicelluloses and Lignin and are most available renewable biopolymers. White rot fungi is used to convert these wastes into microbial protein. Pleurotus Florida are having the most delignification ability amongst other micro-organisms. We determined the amounts of protein, essential and non essential amino acids of the produced microbial protein f...
متن کاملGenetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis
New tools are needed to study the intracellular pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), to facilitate new drug discovery and vaccine development. We have developed methodology to genetically incorporate unnatural amino acids into proteins in Mycobacterium smegmatis, BCG and Mtb, grown both extracellularly in culture and inside host cells. Orthogonal ...
متن کاملBioengineered Peptides Based on α1-PDX Structure as Inhibitors of Furin: Design, Synthesis and Comparative Efficacy
Furin is a Ca 2+ <span style="color: #231f20; font-family: Times New...
متن کامل