Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.
نویسندگان
چکیده
A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms.
منابع مشابه
Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane.
Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize th...
متن کاملNonconventional hydrolytic dehalogenation of 1-chlorobutane by dehydrated bacteria in a continuous solid-gas biofilter.
Rhodococcus erythropolis NCIMB 13064 and Xanthobacter autotrophicus GJ10 are able to catalyze the conversion of halogenated hydrocarbons to their corresponding alcohols. These strains are attractive biocatalysts for gas phase remediation of polluted gaseous effluents because of their complementary specificity for short or medium and for mono-, di-, or trisubstituted halogenated hydrocarbons (C2...
متن کاملModeling of 1,2-Dichloroethane Biodegradation byXanthobacter autotrophicus GJ10 under Shock Loading of Other Halogenated Compounds in Continuous Stirred Tank Bioreactor
A mathematical model describing the behavior of a continuous culture that degrades 1,2-dichloroethane and receives a shock loading of another compound was developed. The model takes into account possible cell death due to toxicity, growth inhibition and additional growth of cells on the second carbon source. Biodegradation is coupled to cell growth on the additional carbon source or by incomple...
متن کاملKinetics of bacterial growth on chlorinated aliphatic compounds.
With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (K(m)) of the first catabolic (dehalogenating) ...
متن کاملInvolvement of a Quinoprotein Alcohol Dehydrogenase and an NAD-dependent Aldehyde Dehydrogenase in 2-Chloroethanol Metabolism in Xanthobacter autotrophicus GJlO
An inducible methanol dehydrogenase showing high activity with 2-chloroethanol was purified from 2-chloroethanol-grown cells of the 1,2-dichloroethane utilizing bacterium Xanthobacter autotrophicus GJ10. The enzyme consisted of a 60 kDa polypeptide that was associated with a 10 kDa polypeptide and contained pyrrolo-quinoline quinone (PQQ) as a prosthetic group. Chloroethanol-grown cells of stra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 49 6 شماره
صفحات -
تاریخ انتشار 1985