Carbon flow of heliobacteria is related more to clostridia than to the green sulfur bacteria.

نویسندگان

  • Kuo-Hsiang Tang
  • Xueyang Feng
  • Wei-Qin Zhuang
  • Lisa Alvarez-Cohen
  • Robert E Blankenship
  • Yinjie J Tang
چکیده

The recently discovered heliobacteria are the only Gram-positive photosynthetic bacteria that have been cultured. One of the unique features of heliobacteria is that they have properties of both the photosynthetic green sulfur bacteria (containing the type I reaction center) and Clostridia (forming heat-resistant endospores). Most of the previous studies of heliobacteria, which are strict anaerobes and have the simplest known photosynthetic apparatus, have focused on energy and electron transfer processes. It has been assumed that like green sulfur bacteria, the major carbon flow in heliobacteria is through the (incomplete) reductive (reverse) tricarboxylic acid cycle, whereas the lack of CO(2)-enhanced growth has not been understood. Here, we report studies to fill the knowledge gap of heliobacterial carbon metabolism. We confirm that the CO(2)-anaplerotic pathway is active during phototrophic growth and that isoleucine is mainly synthesized from the citramalate pathway. Furthermore, to our surprise, our results suggest that the oxidative (forward) TCA cycle is operative and more active than the previously reported reductive (reverse) tricarboxylic acid cycle. Both isotopomer analysis and activity assays suggest that citrate is produced by a putative (Re)-citrate synthase and then enters the oxidative (forward) TCA cycle. Moreover, in contrast to (Si)-citrate synthase, (Re)-citrate synthase produces a different isomer of 2-fluorocitrate that is not expected to inhibit the activity of aconitase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-based metabolomics and fluxomics

Photosynthesis is the process to convert solar energy to biomass and biofuels, which are the only major solar energy storage means on Earth. To satisfy the increased demand for sustainable energy sources, it is essential to understand the process of solar energy storage, that is, the carbon metabolism in photosynthetic organisms. It has been well-recognized that one bottleneck of photosynthesis...

متن کامل

Functional Genomics of Anoxygenic Green Bacteria Chloroflexi Species and Evolution of Photosynthesis

In addition to the most recently reported aerobic anoxygenic phototrophic bacterium Chloroacidobacterium thermophilium [1], five phyla of phototrophic bacteria have been reported, including four phyla anoxygenic phototrophic bacteria (anaerobic and aerobic anoxygenic phototrophic Proteobacteria, filamentous anoxygenic phototrophs (FAPs), green sulfur bacteria and heliobacteria) and oxygenic pho...

متن کامل

Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.

Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates...

متن کامل

Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study

Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...

متن کامل

Mutation-induced perturbation of the special pair P840 in the homodimeric reaction center in green sulfur bacteria

Homodimeric photosynthetic reaction centers (RCs) in green sulfur bacteria and heliobacteria are functional homologs of Photosystem (PS) I in oxygenic phototrophs. They show unique features in their electron transfer reactions; however, detailed structural information has not been available so far. We mutated PscA-Leu688 and PscA-Val689 to cysteine residues in the green sulfur bacterium Chlorob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 45  شماره 

صفحات  -

تاریخ انتشار 2010