Micromechanics-Based Interfacial Debonding Model of Functionally Graded Materials

نویسندگان

  • G. H. Paulino
  • H. M. Yin
  • L. Z. Sun
چکیده

This study develops a micromechanical damage model for two-phase functionally graded materials considering the interfacial debonding of particles and pair-wise interactions between particles. Given an applied mechanical loading, in the particle-matrix zones, the interactions from all other particles over the representative volume element are integrated to calculate the homogenized elastic fields. The progressive damage process is dependent on the applied loading and is represented by the debonding angles which are obtained from the relation between the particle stress and the interfacial strength. In terms of the elastic equivalency, the debonded, isotropic particles are replaced by the perfectly bonded, orthotropic particles. The effective elasticity distribution in the gradation direction is correspondingly solved. Numerical simulations are implemented to illustrate the capability of the proposed model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Analysis of Functionally Graded Skew Plates in Thermal Environment based on the New Third-order Shear Deformation Theory

Functionally graded materials are commonly used in thermal environment to change the properties of constituent materials. The new numerical procedure of functionally graded skew plates in thermal environment is presented in this study based on the C0-form of the novel third-order shear deformation theory. Without the shear correction factor, this theory is also taking the desirable properties a...

متن کامل

Homogenization of Composites with Interfacial Debonding Using Duality-based Solver and Micromechanics

One of the key aspects governing the mechanical performance of composite materials is debonding: the local separation of reinforcing constituents from matrix when the interfacial strength is exceeded. In this contribution, two strategies to estimate the overall response of particulate composites with rigid-brittle interfaces are investigated. The first approach is based on a detailed numerical ...

متن کامل

Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...

متن کامل

Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability,...

متن کامل

An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models

The interaction integral is a conservation integral that relies on two admissible mechanical states for evaluating mixed-mode stress intensity factors (SIFs). The present paper extends this integral to functionally graded materials in which the material properties are determined by means of either continuum functions (e.g. exponentially graded materials) or micromechanics models (e.g. self-cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008