Bandwidth selection for the presmoothed density estimator with censored data

نویسنده

  • M. A. Jácome
چکیده

This paper is concerned with the problem of selecting a suitable bandwidth for the presmoothed density estimator from right censored data. An asymptotic expression for the mean integrated squared error (MISE) of this estimator is given, and the smoothing parameters minimizing it are proved to be consistent approximations of the MISE bandwidths. As consequence, a bandwidth selector based on plug-in ideas is introduced. We also present a bootstrap bandwidth selector. The performance of both methods is investigated in a simulation study, in which the Kaplan-Meier kernel density estimator has been taken as a relevant competitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data

Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...

متن کامل

Density Estimation of Censored Data with Infinite-Order Kernels

Higher-order accurate density estimation under random right censorship is achieved using kernel estimators from a family of infinite-order kernels. A compatible bandwidth selection procedure is also proposed that automatically adapts to level of smoothness of the underlying lifetime density. The combination of infinite-order kernels with the new bandwidth selection procedure produces a consider...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

On Estimation Following Selection with Applications on k-Records and Censored Data

Let X1 and X2 be two independent random variables from gamma populations Pi1,P2 with means alphaθ1 and alphaθ2 respectively, where alpha(> 0) is the common known shape parameter and θ1 and θ2 are scale parameters. Let X(1) ≤ X(2) denote the order statistics ofX1 and X2. Suppose that the population corresponding to the largest X(2) (or the smallest X(1)) observation is selected. The problem ofin...

متن کامل

A Bayesian Approach for Bandwidth Selection in Kernel Density Estimation with Censored Data

Estimating an unknown probability density function is a common problem arising frequently in many scientific disciplines. Among many density estimation methods, the kernel density estimators are widely used. However, the classical kernel density estimators suffer from an intrinsic problem as they assign positive values outside the support of the target density. This problem is commonly known as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006