Ethylenediamine pretreatment changes cellulose allomorph and lignin structure of lignocellulose at ambient pressure
نویسندگان
چکیده
BACKGROUND Pretreatment of lignocellulosic biomass is essential to increase the cellulase accessibility for bioconversion of lignocelluloses by breaking down the biomass recalcitrance. In this work, a novel pretreatment method using ethylenediamine (EDA) was presented as a simple process to achieve high enzymatic digestibility of corn stover (CS) by heating the biomass-EDA mixture with high solid-to-liquid ratio at ambient pressure. The effect of EDA pretreatment on lignocellulose was further studied. RESULTS High enzymatic digestibility of CS was achieved at broad pretreatment temperature range (40-180 °C) during EDA pretreatment. Herein, X-ray diffractogram analysis indicated that cellulose I changed to cellulose III and amorphous cellulose after EDA pretreatment, and cellulose III content increased along with the decrease of drying temperature and the increase of EDA loading. Lignin degradation was also affected by drying temperature and EDA loading. Images from scanning electron microscope and transmission electron microscope indicated that lignin coalesced and deposited on the biomass surface during EDA pretreatment, which led to the delamination of cell wall. HSQC NMR analysis showed that ester bonds of p-coumarate and ferulate units in lignin were partially ammonolyzed and ether bonds linking the phenolic monomers were broken during pretreatment. In addition, EDA-pretreated CS exhibited good fermentability for simultaneous saccharification and co-fermentation process. CONCLUSIONS EDA pretreatment improves the enzymatic digestibility of lignocellulosic biomass significantly, and the improvement was caused by the transformation of cellulose allomorph, lignin degradation and relocalization in EDA pretreatment.
منابع مشابه
The correlation between the enzymatic saccharification and the multidimensional structure of cellulose changed by different pretreatments
BACKGROUND The bioconversion of cellulose into simple sugars or chemicals has attracted extensive attention in recent decades. The crystal allomorphs of cellulose are key factor affecting cellulose saccharification. However, due to the influence of lignin, hemicelluloses, and different characterization methods in the literature, the effect of cellulose allomorphs on cellulose saccharification i...
متن کاملPhysico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.
A pretreatment of lignocellulosic biomass to produce biofuels, polymers, and other chemicals plays a vital role in the biochemical conversion process toward disrupting the closely associated structures of the cellulose-hemicellulose-lignin molecules. Various pretreatment steps alter the chemical/physical structure of lignocellulosic materials by solubilizing hemicellulose and/or lignin, decreas...
متن کاملOvercoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment
Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. ...
متن کاملHetti Palonen Role of lignin in the enzymatic hydrolysis of lignocellulose
Characterization, understanding and overcoming barriers of enzymatic hydrolysis of different raw materials is essential for the development of economically competitive processes based on enzymatic treatments. This work focused on factors relevant for the improvement of enzymatic hydrolysis of lignocellulose raw materials derived from softwood. The major interest of the work was in lignin. Speci...
متن کاملAcid Hydrolysis of Pretreated Palm Oil Lignocellulosic Wastes
Palm oil solid wastes consist of cellulose, hemicellulose and lignin. In this study, a single stage of acid hydrolysis process of palm oil empty fruit bunch (EFB) for production of fermentable sugar was carried out under moderate temperature (45°C) and ambient pressure. The effect of four different process variables such as solid size, HCl concentration, solid percentage and temperature were in...
متن کامل