Modify or die? - RNA modification defects in metazoans

نویسندگان

  • L Peter Sarin
  • Sebastian A Leidel
چکیده

Chemical RNA modifications are present in all kingdoms of life and many of these post-transcriptional modifications are conserved throughout evolution. However, most of the research has been performed on single cell organisms, whereas little is known about how RNA modifications contribute to the development of metazoans. In recent years, the identification of RNA modification genes in genome wide association studies (GWAS) has sparked new interest in previously neglected genes. In this review, we summarize recent findings that connect RNA modification defects and phenotypes in higher eukaryotes. Furthermore, we discuss the implications of aberrant tRNA modification in various human diseases including metabolic defects, mitochondrial dysfunctions, neurological disorders, and cancer. As the molecular mechanisms of these diseases are being elucidated, we will gain first insights into the functions of RNA modifications in higher eukaryotes and finally understand their roles during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wobble uridine modifications–a reason to live, a reason to die?!

Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscript...

متن کامل

A Viral Platform for Chemical Modification and Multivalent Display

The ability to chemically modify the surfaces of viruses and virus-like particles makes it possible to confer properties that make them potentially useful in biotechnology, nanotechnology and molecular electronics applications. RNA phages (e.g. MS2) have characteristics that make them suitable scaffolds to which a variety of substances could be chemically attached in definite geometric patterns...

متن کامل

The emerging role of RNA editing in plasticity.

All true metazoans modify their RNAs by converting specific adenosine residues to inosine. Because inosine binds to cytosine, it is a biological mimic for guanosine. This subtle change, termed RNA editing, can have diverse effects on various RNA-mediated cellular pathways, including RNA interference, innate immunity, retrotransposon defense and messenger RNA recoding. Because RNA editing can be...

متن کامل

Study of multilayer and multi-component coatings deposited using cathodic Arc technique on H-13 hot work steel for die-casting applications

Die casting process is used since long, but even today problems like erosion, corrosion, soldering and sticking affect die life. These dies undergo thermal cyclic loads from 70 oC to 600 oC during processing. Physical Vapor Deposition (PVD) hard coating can play an important role in such extreme applications. In the present work, we report the use of Chromium based multila...

متن کامل

Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014