Capturing Planar Tire Properties Using Static Constraint Modes

نویسندگان

  • Rui Ma
  • Alexander A. Reid
  • John B. Ferris
چکیده

The interaction between the tire and road has long been of interest for vehicle dynamic simulation. A planar tire model is developed to capture the tire circumferential displacements and calculate the spindle force according to the tire shape. The tire is discretized into segments and Hamilton’s principle is used to derive the model mathematical expression. It is shown that the static constraint modes are functions of two non-dimensional parameters; a third parameter defines the overall stiffness. These parameters are experimentally identified for a specific tire. The bridging and enveloping properties are examined circumferentially. The prediction accuracy of spindle force with respect to tire-road interference is evaluated by comparing the simulation and experimental response for a quasi-static cleat test. The simulation result of spindle force agrees with the experimental data and the process can be implemented as a morphological pre-filter of road profiles for more efficient vehicle modeling and simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Experimental Verification of Vibration and Noise Caused by the Cavity Modes of a Rolling Tire Under Static Loading

Tire cavity noise refers to the vehicle noise due to the excitation of the acoustic mode of a tire air cavity. Although two lowest acoustic modes are found to be sufficient to characterize the cavity dynamics, the dynamical response of these two modes is complicated by two major factors. First, the tire cavity geometry is affected by the static load applied to the tire due to vehicle weight. Se...

متن کامل

Comparison of Static and Dynamic Control Allocation Techniques for Integrated Vehicle Control

Comparison of static and dynamic control allocation techniques for nonlinear constrained optimal distribution of tire forces in a vehicle control system is presented. The total body forces and moments, obtained from a high level controller, are distributed among tire forces, which are constrained to nonlinear constraint of saturation, through two approaches. For the static control allocation te...

متن کامل

Capturing Outlines of Planar Generic Images by Simultaneous Curve Fitting and Sub-division

In this paper, a new technique has been designed to capture the outline of 2D shapes using cubic B´ezier curves. The proposed technique avoids the traditional method of optimizing the global squared fitting error and emphasizes the local control of data points. A maximum error has been determined to preserve the absolute fitting error less than a criterion and it administers the process of curv...

متن کامل

Obtaining relations between the Magic Formula coefficients and tire physical properties

This paper introduces a technique that relates the coefficients of the Magic Formula tire model to the physical properties of the tire. For this purpose, the tire model is developed by ABAQUS commercial software. The output of this model for the lateral tire force is validated by available tire information and then used to identify the tire force properties. The Magic Formula coefficients are o...

متن کامل

Dynamic analysis of a tire using a nonlinear Timoshenko ring model

It is well known that tires play an important role in the generation of rolling noise. For low frequencies, the circular ring model can describe in a simple way the tire dynamic behaviour. This model is based on the Euler Bernoulli beam theory and takes into account the prestress generated by the internal air pressure but is otherwise linear. However, nonlinear effects resulting from high inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013