On the performance of exponential integrators for problems in magnetohydrodynamics

نویسندگان

  • Lukas Einkemmer
  • Mayya Tokman
  • John Loffeld
چکیده

Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EpiRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations 1 ar X iv :1 60 4. 02 61 4v 1 [ m at h. N A ] 9 A pr 2 01 6

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs

Exponential integrators have enjoyed a resurgence of interest in recent years, but there is still limited understanding of how their performance compares with state-of-art integrators most notably the commonly used Newton-Krylov implicit methods. In this paper we present comparative performance analysis of Krylov-based exponential, implicit and explicit integrators on a suite of stiff test prob...

متن کامل

Analytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet

In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET A review of exponential integrators for first order semi-linear problems

Recently, there has been a great deal of interest in the construction of exponential integrators. These integrators, as their name suggests, use the exponential function (and related functions) of the Jacobian or an approximation to it, inside the numerical method. However, unlike some of the recent literature suggests, integrators based on this philosophy have been known since at least 1960. T...

متن کامل

Exponential Integrators for Semilinear Problems

In the present work, exponential integrators for time integration of semilinear problems are studied. These integrators, as there name suggests, use the exponential and often functions which are closely related to the exponential function inside the numerical method. Three main classes of exponential integrators, exponential linear multistep (multivalue), exponential Runge–Kutta (multistage) an...

متن کامل

Norges Teknisk-naturvitenskapelige Universitet Expint — a Matlab 1 Package for Exponential Integrators

Recently, a great deal of attention has been focused on the construction of exponential integrators for semi-linear problems. In this paper we describe a matlab package which aims to facilitate the quick deployment and testing of exponential integrators, of Runge–Kutta, multistep and general linear type. A large number of integrators are included in this package along with several well known ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 330  شماره 

صفحات  -

تاریخ انتشار 2017