Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging.

نویسندگان

  • Fang Yang
  • Yixin Li
  • Zhongping Chen
  • Yu Zhang
  • Junru Wu
  • Ning Gu
چکیده

An encapsulated microbubble (EMB) of a novel construct is proposed to enhance the magnetic resonance imaging contrast by introducing superparamagnetic iron oxide (SPIO) nanoparticles (mean diameter is 12 nm) into the polymer shell of the microbubble. Such microbubble vesicle has nitrogen gas in the core and its mean diameter is 3.98 microm. An in vitro MR susceptibility experiment using a phantom consisting EMBs has shown that the relationship between the transverse relaxation rate R(2) and the Fe(3)O(4) nanoparticle concentration in the shell (the volume fraction of EMBs is kept constant) can be fitted to a linear function and an exponentially growth function is observed between R(2) and the SPIO-inclusion microbubble concentration. The in vivo MRI experiments also show that the SPIO-inclusion microbubbles have longer contrast-enhancement duration time in rat liver than non-SPIO-inclusion microbubbles. An in vitro ultrasound imaging experiment of SPIO-inclusion microbubbles also shows that they can enhance the ultrasound contrast significantly. Additionally, the interaction between the SPIO-inclusion microbubbles and cells indicates that such microbubble construct can retain the acoustic property under the ultrasound exposure by controlling the SPIO concentration in the shell. Therefore, the proposed SPIO nanoparticle-embedded EMBs potentially can become effective MR susceptibility contrast agents while also can be good US contrast agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times

Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...

متن کامل

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles

Dual-mode contrast agents (CAs) have great potential for improving diagnostics. However, the effectiveness of CAs is strictly related to both the solution adopted to merge the two agents into a single probe unit, and the ratio between the two agents. In this study, two dual-mode CAs for simultaneous magnetic resonance imaging (MRI) and ultrasound imaging (UI) were assessed. For this purpose, di...

متن کامل

Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging.

Magnetic microbubbles (MMBs) consisting of microbubbles (MBs) and magnetic nanoparticles (MNPs) were synthesized for use as novel markers for improving multifunctional biomedical imaging. The MMBs were fabricated by assembling MNPs in different concentrations on the surfaces of MBs. The relationships between the structure, magnetic properties, stability of the MMBs, and their use in magnetic re...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 30 23-24  شماره 

صفحات  -

تاریخ انتشار 2009