Somatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors.

نویسندگان

  • S Boehm
  • H Betz
چکیده

Somatostatin is one of the major peptides in interneurons of the hippocampus. It is believed to play a role in memory formation and to reduce the susceptibility of the hippocampus to seizure-like activity. However, at the cellular level, the actions of somatostatin on hippocampal neurons are still controversial, ranging from inhibition to excitation. In the present study, we measured autaptic currents of hippocampal neurons isolated in single-neuron microcultures. Somatostatin and the analogous peptides seglitide and octreotide reduced glutamatergic, but not GABAergic, autaptic currents via pertussis toxin-sensitive G-proteins. This effect was observed whether autaptic currents were mediated by NMDA or non-NMDA glutamate receptors. Furthermore, somatostatin did not affect currents evoked by the direct application of glutamate, but reduced the frequency of spontaneously occurring excitatory autaptic currents. These results show that presynaptic somatostatin receptors of the SRIF1 family inhibit glutamate release at hippocampal synapses. Somatostatin, seglitide, and octreotide also reduced the frequency of miniature excitatory postsynaptic currents in mass cultures without affecting their amplitudes. In addition, all three agonists inhibited voltage-activated Ca2+ currents at neuronal somata, but failed to alter K+ currents, effects that were also abolished by pertussis toxin. Thus, presynaptic somatostatin receptors in the hippocampus selectively inhibit excitatory transmission via G-proteins of the Gi/Go family and through at least two separate mechanisms, the modulation of Ca2+ channels and an effect downstream of Ca2+ entry. This presynaptic inhibition by somatostatin may provide a basis for its reportedly anticonvulsive action.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus.

We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 microm. In hippocampal slices, KA at...

متن کامل

PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region.

Specific receptors for pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide with neuroregulatory and neurotrophic functions, have been identified recently in different brain regions, including the hippocampus. In this study, we examined the effects of PACAP-38 on the excitatory postsynaptic field potentials (fEPSPs) evoked at the Schaffer collateral-CA1 synapses. Brief ba...

متن کامل

Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+ entry.

Neuropeptide Y (NPY) agonists inhibit glutamate release by a presynaptic action at the CA3-CA1 synapse of rat hippocampus. We have examined the relationship between [Capre]t via presynaptic, voltage-dependent calcium channels (VDCCs), measured optically by using the fluorescent calcium indicator fura-2, and transmitter release, measured electrophysiologically. Activation of presynaptic NPY Y2 r...

متن کامل

Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1.

The metabotropic glutamate receptors (mGluRs) have many important roles in regulation of neuronal excitability and synaptic transmission. In hippocampal area CA1, activation of mGluRs can reduce both excitatory and inhibitory synaptic transmission. The conventional view is that the presynaptic effects are mediated by L-2-amino-4-phosphonobutyric acid (L-AP4)-sensitive, or group III mGluRs (mGlu...

متن کامل

The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum.

Endocannabinoids work as retrograde messengers and contribute to short-term and long-term modulation of synaptic transmission via presynaptic cannabinoid receptors. It is generally accepted that the CB1 cannabinoid receptor (CB1) mediates the effects of endocannabinoid in inhibitory synapses. For excitatory synapses, however, contributions of CB1, "CB3," and some other unidentified receptors ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 1997