Regulation of aromatic amino acid biosynthesis in higher plants. Properties of an aromatic amino acid-sensitive chorismate mutase (CM-1) from mung bean.

نویسندگان

  • D G Gilchrist
  • T Kosuge
چکیده

Etiolated mung bean seedlings were examined for chorismate mutase activity. Evidence for the occurrence of two forms of the enzyme (designated CM-1 and CM-2) was obtained by ammonium sulfate fractionation, anion exchange cellulose chromatography, and isoelectric focusing. The two forms showed distinctly different properties, as CM-1 was inhibited by phenylalanine and tyrosine and activated by tryptophan, but inhibition by phenylalanine and tyrosine was reversed by tryptophan. The other form, CM-2, was unaffected by any of the three aromatic amino acids. Isoelectric points of the two forms were CM-1, pH 4.6, and CM-2, pH 5.6. The molecular weights estimated by molecular sieving on Sephadex G-200 were CM-1, 50,000, and CM-2, 36,000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana.

The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metab...

متن کامل

Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuabl...

متن کامل

Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae.

Control of transcription and enzyme activities are two interwoven regulatory systems essential for the function of a metabolic node. Saccharomyces cerevisiae strains differing in enzyme activities at the chorismate branch point of aromatic amino acid biosynthesis were constructed by recombinant DNA technology. Expression of an allosterically unregulated, constitutively activated chorismate muta...

متن کامل

A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions.

Chorismate mutase acts at the first branchpoint of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. Comparison of the x-ray structures of allosteric chorismate mutase from the yeast Saccharomyces cerevisiae with Escherichia coli chorismate mutase/prephenate dehydratase suggested conserved active sites between both enzymes. We have replaced all critical ...

متن کامل

Comparison of Chorismate Mutase Isozyme Patterns in Selected

A wide variety of plants have been assayed to determine if they contain three isozymes of chorismate mutase (EC 5.4.99.5) as does alfalfa (Medicago sadva L.) or two isozymes, as does mung bean (Phaseolus aureus). The isozymes were separated by disc electrophoresis. All anthophyta with the exception of some closely related Leguminosae contained three isozymes of chorismate mutase. The one conife...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 1972