Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences
نویسنده
چکیده
In this paper we find closed forms of the generating function ∞ ∑ k=0 U r nx , for powers of any non-degenerate second-order recurrence sequence, Un+1 = aUn+bUn−1, a +4b 6= 0, completing a study began by Carlitz [1] and Riordan [4] in 1962. Moreover, we generalize a theorem of Horadam [3] on partial sums involving such sequences. Also, we find closed forms for weighted (by binomial coefficients) partial sums of powers of any nondegenerate second-order recurrence sequences. As corollaries we give some known and seemingly unknown identities and derive some very interesting congruence relations involving Fibonacci and Lucas sequences.
منابع مشابه
Generating Matrices for Weighted Sums of Second Order Linear Recurrences
In this paper, we give fourth order recurrences and generating matrices for the weighted sums of second order recurrences. We derive by matrix methods some new explicit formulas and combinatorial representations, and some relationships between the permanents of certain superdiagonal matrices and these sums.
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملRecurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملComplete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کامل