Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings
نویسندگان
چکیده
The cellular synthesis site and ensuing storage location for human factor VIII (FVIII), the coagulation protein deficient in hemophilia A, has been elusive. FVIII stability and half-life is dependent on non-covalent complex formation with von Willebrand factor (VWF) to avoid proteolysis and clearance. VWF is synthesized in megakaryocytes and endothelial cells, and is stored and secreted from platelet alpha granules and Weibel-Palade bodies of endothelial cells. In this paper we provide direct evidence for FVIII synthesis in 2 types of primary human endothelial cells: glomerular microvascular endothelial cells (GMVECs) and umbilical vein endothelial cells (HUVECs). Gene expression quantified by real time PCR revealed that levels of F8 and VWF are similar in GMVECs and HUVECs. Previous clinical studies have shown that stimulation of vasopressin V2 receptors causes parallel secretion of both proteins. In this study, we found that both endothelial cell types express AVPR2 (vasopressin V2 receptor gene) and that AVPR2 mRNA levels are 5-fold higher in GMVECs than HUVECs. FVIII and VWF proteins were detected by fluorescent microscopy in Weibel-Palade bodies within GMVECs and HUVECs using antibodies proven to be target specific. Visual presence of FVIII and VWF in Weibel-Palade bodies was confirmed by correlation measurements. The high extent of correlation was compared with negative correlation values obtained from FVIII detection with cytoplasmic proteins, β-actin and Factor H. FVIII activity was positive in GMVEC and HUVEC cell lysates. Stimulated GMVECs and HUVECs were found to secrete cell-anchored ultra-large VWF strings covered with bound FVIII.
منابع مشابه
Factor VIII alters tubular organization and functional properties of von Willebrand factor stored in Weibel-Palade bodies.
In endothelial cells, von Willebrand factor (VWF) multimers are packaged into tubules that direct biogenesis of elongated Weibel-Palade bodies (WPBs). WPB release results in unfurling of VWF tubules and assembly into strings that serve to recruit platelets. By confocal microscopy, we have previously observed a rounded morphology of WPBs in blood outgrowth endothelial cells transduced to express...
متن کاملvon Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively.
Large multimers of von Willebrand factor (vWf) are released from the Weibel-Palade bodies of cultured endothelial cells following treatment with a secretagogue (Sporn et al, Cell 46:185, 1986). These multimers were shown by immunofluorescent staining to bind more extensively to the extracellular matrix of human foreskin fibroblasts than constitutively secreted vWf, which is composed predominant...
متن کاملRegulatory Components of the Alternative Complement Pathway in Endothelial Cell Cytoplasm, Factor H and Factor I, Are Not Packaged in Weibel-Palade Bodies
It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF) in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by t...
متن کاملStorage and regulated secretion of factor VIII in blood outgrowth endothelial cells.
BACKGROUND Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this study, we explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delive...
متن کاملBiosynthesis, processing and secretion of von Willebrand factor: biological implications.
von Willebrand factor is a multimeric plasma glycoprotein that is required for normal haemostasis. von Willebrand factor is synthesized by endothelial cells and megakaryocytes, and originates from its precursor pro-von Willebrand factor. The endoproteolytic processing of pro-von Willebrand factor results in mature von Willebrand factor and von Willebrand factor propeptide (also known as von Wil...
متن کامل