Nonnegative Inverse Eigenvalue Problem

نویسنده

  • Ricardo L. Soto
چکیده

Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an important subclass of inverse problems that arise in the context of mathematical modeling and parameter identification. A simple application of such problems is the construction of Leontief models in economics [1]-[2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices

Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...

متن کامل

The inverse eigenvalue problem via orthogonal matrices

In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...

متن کامل

The Real and the Symmetric Nonnegative Inverse Eigenvalue Problems Are Different

We show that there exist real numbers λ1, λ2, . . . , λn that occur as the eigenvalues of an entry-wise nonnegative n-by-n matrix but do not occur as the eigenvalues of a symmetric nonnegative n-by-n matrix. This solves a problem posed by Boyle and Handelman, Hershkowitz, and others. In the process, recent work by Boyle and Handelman that solves the nonnegative inverse eigenvalue problem by app...

متن کامل

On nonnegative realization of partitioned spectra

We consider partitioned lists of real numbers Λ = {λ1, λ2, . . . , λn}, and give efficient and constructive sufficient conditions for the existence of nonnegative and symmetric nonnegative matrices with spectrum Λ. Our results extend the ones given in [R.L. Soto and O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem. Linear Algebra Appl., 416:844– 856, 2006....

متن کامل

Ela on Nonnegative

We consider partitioned lists of real numbers Λ = {λ1, λ2, . . . , λn}, and give efficient and constructive sufficient conditions for the existence of nonnegative and symmetric nonnegative matrices with spectrum Λ. Our results extend the ones given in [R.L. Soto and O. Rojo. Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem. Linear Algebra Appl., 416:844– 856, 2006....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012