Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
نویسندگان
چکیده
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
منابع مشابه
A Lattice Kinetic Scheme with Grid Refinement for 3 D Resistive Magnetohydrodynamics
Title A Lattice Kinetic Scheme with Grid Refinement for 3D Resistive Magnetohydrodynamics Candidate Bryan R. Osborn Degree and Year Master of Science, 2004 Thesis Committee William D. Dorland, Chair Assistant Professor of Physics Adil B. Hassam Professor of Physics C. David Levermore Professor of Mathematics We develop, analyze, and numerically test a 3D lattice kinetic scheme for the resistive...
متن کاملLattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence
A simplified one-dimensional (1D) magnetohydrodynamics (MHD) is solved using a lattice Boltzmann and a quantum lattice gas model. It is shown that the magnetic field decreases the strength of the velocity shock fronts, with marked spikes in the magnetic field strength that gradually broaden in time. There is very good agreement between the lattice Boltzmann model—a representation of non-linear ...
متن کاملSimulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model
Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM) has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the ac...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملMulti-dimensional Numerical Scheme for Resistive Relativistic MHD
The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the HLL prescr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2015