Importance of water entropy in rotation mechanism of F1-ATPase
نویسنده
چکیده
We briefly review our theoretical study on the rotation scheme of F1-ATPase. In the scheme, the key factor is the water entropy which has been shown to drive a variety of self-assembly processes in biological systems. We decompose the crystal structure of F1-ATPase into three sub-complexes each of which is composed of the γ subunit, one of the β subunits, and two α subunits adjacent to them. The βE, βTP, and βDP subunits are involved in the sub-complexes I, II, and III, respectively. We calculate the hydration entropy of each sub-complex using a hybrid of the integral equation theory for molecular liquids and the morphometric approach. It is found that the absolute value of the hydration entropy follows the order, sub-complex I > sub-complex II > sub-complex III. Moreover, the differences are quite large, which manifests highly asymmetrical packing of F1-ATPase. In our picture, this asymmetrical packing plays crucially important roles in the rotation of the γ subunit. We discuss how the rotation is induced by the water-entropy effect coupled with such chemical processes as ATP binding, ATP hydrolysis, and release of the products.
منابع مشابه
Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow
We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hund...
متن کاملA model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-ATPase.
Although the binding change mechanism of rotary catalysis by which F1-ATPase hydrolyzes ATP has been supported by equilibrium, kinetic, and structural observations, many questions concerning the function remain unanswered. Because of the importance of this enzyme, the search for a full understanding of its mechanism is a key problem in structural biology. Making use of the results of free energ...
متن کاملKinetics and chemomechanical properties of the F1-ATPase molecular motor
F1-ATPase hydrolyzes ATP into ADP and Pi and converts chemical energy into mechanical rotation with exceptionally high efficiency. This energy-transducing molecular motor increasingly attracts interest for its unique cellular functions and promising application in nanobiotechnology. To better understand the chemomechanics of rotation and loading dynamics of F1-ATPase, we propose a computational...
متن کاملExpression of mammalian mitochondrial F1‐ATPase in Escherichia coli depends on two chaperone factors, AF1 and AF2
F1-ATPase (F1) is a multisubunit water-soluble domain of FoF1- ATP synthase and is a rotary enzyme by itself. Earlier genetic studies using yeast suggested that two factors, Atp11p and Atp12p, contribute to F1 assembly. Here, we show that their mammalian counterparts, AF1 and AF2, are essential and sufficient for efficient production of recombinant bovine mitochondrial F1 in Escherichia coli ce...
متن کاملThe structure of bovine mitochondrial F1-ATPase: an example of rotary catalysis.
There is now compelling evidence in support of a rotary catalytic mechanism in F1-ATPase, and, by extension, in the intact ATP synthase. Although models have been proposed to explain how protein translocation in F0 results in rotation of the gamma-subunit relative to the alpha 3/beta 3 assembly in F1 [22], these are still speculative. It seems likely that a satisfactory explanation of this mech...
متن کامل