Correlation and efficiency of propensity score-based estimators for average causal effects
نویسندگان
چکیده
Propensity score based-estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions of the data generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the correlation may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding towards outcome and treatment, and whether a constant or non-constant causal effect is present.
منابع مشابه
Correlation and efficiency of propensity score-based estimators for average causal effects, IFAU working paper 2015:3
Propensity score based-estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probabili...
متن کاملBounded, Efficient, and Doubly Robust Estimation with Inverse Weighting
Consider the problem of estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on the nonparametric likelihood approach of Tan and propose new doubly robust estimators. These es...
متن کاملBounded , efficient and doubly robust estimation with inverse weighting
Consider estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on a previous nonparametric likelihood approach and propose new doubly robust estimators, which have desirable pr...
متن کاملBalancing Score Adjusted Targeted Minimum Loss-based Estimation.
Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects including the average treatment effect and effect among the treated. Estimators that adjust for the propensity score in a nonparametric way, such as matching on an estimate of the propensity score, can be consistent when the estimated propensity score is not consistent for the true propensity score b...
متن کاملAn Application of Non-response Bias Reduction Using Propensity Score Methods
In many statistical studies some units do not respond to a number or all of the questions. This situation causes a problem called non-response. Bias and variance inflation are two important consequences of non-response in surveys. Although increasing the sample size can prevented variance inflation, but cannot necessary adjust for the non-response bias. Therefore a number of methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 46 شماره
صفحات -
تاریخ انتشار 2017