Slow and superluminal light in semiconductor optical amplifiers
نویسندگان
چکیده
Introduction: Optical buffer via optically controlled slow light propagation is highly desirable for numerous applications, including all-optical true time delay, signal processing and storage. The device is based on optically controlled dispersion, which leads to the possibility to control the group velocity. An all-optical buffer based on electromagnetically-induced transparency in quantum dots has been theoretically considered [1]. Recently, slow light via coherent population oscillation in quantum wells has been demonstrated [2]. In this Letter, we analyse the possibility of realisation of slow and ‘superluminal’ light in semiconductor optical amplifier (SOA) via wave-mixing. Dynamics of carrier density and of the carrierdependent refractive index leads to the nonlinear dispersion, and the possibility of slow and ‘superluminal’ light.
منابع مشابه
Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers.
Tunable delays in semiconductor optical amplifiers are achieved via four wave mixing between a strong pump beam and a modulated probe beam. The delay of the probe beam can be controlled both electrically, by changing the SOA bias, and optically, by varying the pump power or the pump-probe detuning. For sinusoidal modulated signal at 0.5 GHz, a tunable delay of 1.6 ns is achieved. This correspon...
متن کاملA Proposal for a New Method of Modeling of the Quantum Dot Semiconductor Optical Amplifiers
With the advancement of nanoscale semiconductor technology,semiconductor optical amplifiers are used to amplify and process all-optical signals. Inthis paper, with the aim of calculating the gain of quantum dot semiconductor opticalamplifier (QD-SOA), two groups of rate equations and the optical signal propagatingequation are used in the active layer of the device. For t...
متن کاملSimulation and Analysis the Performance of 3970 Km DWDM Transmission Link Employing Optimized Semiconductor Optical Amplifiers
In this paper first we try to analysis the behavior ofthe SOAs in the optical networks and then have proposed anumerical simple model to simulate the behavior of thesemiconductor optical amplifiers. After that by employing thismodel as inline amplifier for a DWDM optical system, we havesimulated the transmission of 10 channels with bit rate 10 Gb/sup to distance 3970 km with RZ-DPSK modulation ...
متن کاملChirp-enhanced fast light in semiconductor optical amplifiers.
We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported...
متن کاملThe role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.
We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We demonstrate approximately 120 degrees phase delay as well as approximately 170 degrees phase advance...
متن کامل