Semidirect Products and Reduction in Mechanics
نویسندگان
چکیده
This paper shows how to reduce a Hamiltonian system on the cotangent bundle of a Lie group to a Hamiltonian system in the dual of the Lie algebra of a semidirect product. The procedure simplifies. unifies, and extends work of Greene, Guillemin, Holm, Holmes, Kupershmidt, Marsden, Morrison, Ratiu, Sternberg and others. The heavy top, compressible fluids, magnetohydrodynamics, elasticity, the Maxwell-Vlasov equations and multi fluid plasmas are presented as examples. Starting with Lagrangian variables, our method explains in a direct way why semidirect products occur so frequently in examples. It also provides a framework for the systematic introduction of Clebsch, or canonical, variables.
منابع مشابه
Symplectic Reduction for Semidirect Products and Central Extensions
This paper proves a symplectic reduction by stages theorem in the context of geometric mechanics on symplectic manifolds with symmetry groups that are group extensions. We relate the work to the semidirect product reduction theory developed in the 1980’s by Marsden, Ratiu, Weinstein, Guillemin and Sternberg as well as some more recent results and we recall how semidirect product reduction finds...
متن کاملLagrangian Reduction, the Euler–Poincaré Equations, and Semidirect Products
There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the Lagrangian analogue of this process and link it with the general theory of Lagrangian reduction; that is the reduction of variational principles. Th...
متن کاملar X iv : c ha o - dy n / 99 06 00 4 v 1 3 1 M ay 1 99 9 Lagrangian Reduction , the Euler – Poincaré Equations , and Semidirect Products
There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the Lagrangian analogue of this process and link it with the general theory of Lagrangian reduction; that is the reduction of variational principles. Th...
متن کامل. SG ] 1 5 Ju n 19 99 Discrete Lagrangian reduction , discrete Euler – Poincaré equations , and semidirect products
A discrete version of Lagrangian reduction is developed in the context of discrete time Lagrangian systems on G×G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. In this context the reduction of the discrete Euler–Lagrange equations is shown to lead to th...
متن کاملOn generalized semidirect product of association schemes
In this paper, we introduce a new product operation of association schemes in order to generalize the notion of semidirect products and wreath product. We then show that our construction covers some association schemes which are neither wreath products nor semidirect products of two given association schemes.
متن کامل