A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form
نویسندگان
چکیده
BACKGROUND Mild solubilization of inclusion bodies has attracted attention in recent days, with an objective to preserve the existing native-like secondary structure of proteins, reduce protein aggregation during refolding and recovering high amount of bioactive proteins from inclusion bodies. RESULTS Here we presented an efficient method for mild solubilization of inclusion bodies by using a freeze-thawing process in the presence of low concentration of urea. We used two different proteins to demonstrate the advantage of this method over the traditional urea-denatured method: enhanced green fluorescent protein (EGFP) and the catalytic domain of human macrophage metalloelastase (MMP-12_CAT). Firstly, PBS buffer at pH 8 containing different molar concentration of urea (0-8 M) were used to solubilize EGFP and MMP-12-CAT inclusion bodies and the solubility achieved in 2 M urea in PBS buffer by freeze-thawing method was comparable to that of PBS buffer containing 8 M urea by traditional urea-denatured method. Secondly, different solvents were used to solubilize EGFP and MMP-12_CAT from inclusion bodies and the results indicated that a wide range of buffers containing 2 M urea could efficiently solubilize EGFP and MMP-12_CAT inclusion bodies by freeze-thawing method. Thirdly, the effect of pH and freezing temperature on the solubility of EGFP and MMP-12_CAT inclusion bodies were studied, revealing that solubilization of inclusion bodies by freeze-thawing method is pH dependent and the optimal freezing temperature indicated here is -20°C. Forth, the solubilized EGFP and MMP-12_CAT from inclusion bodies were refolded by rapid dilution and dialysis, respectively. The results showed that the refolded efficiency is much higher (more than twice) from freeze-thawing method than the traditional urea-denatured method. The freeze-thawing method containing 2 M urea also effectively solubilized a number of proteins as inclusion bodies in E.coli. CONCLUSIONS Mild solubilization of inclusion body proteins using the freeze-thawing method is simple, highly efficient and generally applicable. The method can be utilized to prepare large quantities of bioactive soluble proteins from inclusion bodies for basic research and industrial purpose.
منابع مشابه
Solubilization and refolding of bacterial inclusion body proteins.
Inclusion bodies produced in Escherichia coli are composed of densely packed denatured protein molecules in the form of particles. Refolding of inclusion body proteins into bioactive forms is cumbersome, results in poor recovery and accounts for the major cost in production of recombinant proteins from E. coli. With new information available on the structure and function of protein aggregates i...
متن کاملتولید آزمایشگاهی فاکتور رشد اپیدرم انسانی نوترکیب و ارزیابی عملکرد آن در بقای سلولی
Background and purpose: Human epidermal growth factor (hEGF) is a polypeptide of 53 amino acids with various medical application such as wound healing. The purpose of this study was cloning, expression, and purification of recombinant human EGF (rhEGF) and assessment of its mitogenic effect on NIH 3T3 cells. Materials and methods: Subcloninig of hEGF was performed in to pET24a (+). Protein e...
متن کاملA Convenient Method for Solubilization and Refolding Recombinant Proteins: An Experience from Recombinant Mouse TGF-β1
Background: The production of recombinant proteins in Escherichia coli is one of the most valuable achievements in biotechnology, with many therapeutic and diagnostic applications; however, the aggregation and misfolding of proteins that result in the formation of insoluble inclusion bodies is a disruptive factor in this process. Various solubilization and refolding methods can be used to impro...
متن کاملRecovery of bioactive protein from bacterial inclusion bodies using trifluoroethanol as solubilization agent
BACKGROUND Formation of inclusion bodies poses a major hurdle in recovery of bioactive recombinant protein from Escherichia coli. Urea and guanidine hydrochloride have routinely been used to solubilize inclusion body proteins, but many times result in poor recovery of bioactive protein. High pH buffers, detergents and organic solvents like n-propanol have been successfully used as mild solubili...
متن کاملProtein recovery from inclusion bodies of Escherichia coli using mild solubilization process
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by opt...
متن کامل