Limit theorems for weighted samples with applications to Sequential Monte Carlo Methods
نویسندگان
چکیده
In the last decade, sequential Monte-Carlo methods (SMC) emerged as a key tool in computational statistics (see for instance Doucet et al. (2001), Liu (2001), Künsch (2001)). These algorithms approximate a sequence of distributions by a sequence of weighted empirical measures associated to a weighted population of particles. These particles and weights are generated recursively according to elementary transformations: mutation and selection. Examples of applications include the sequential Monte-Carlo techniques to solve optimal non-linear filtering problems in state-space models, molecular simulation, genetic optimization, etc. Despite many theoretical advances (see for instance Gilks and Berzuini property of these approximations remains of course a question of central interest. In this paper, we analyze sequential Monte Carlo methods from an asymptotic perspective, that is, we establish law of large numbers and invariance principle as the number of particles gets large. We introduce the concepts of weighted sample consistency and asymptotic normality, and derive conditions under which the mutation and the selection procedure used in the sequential Monte-Carlo build-up preserve these properties. To illustrate our findings, we analyze SMC algorithms to approximate the filtering distribution in state-space models. We show how our techniques allow to relax restrictive technical conditions used in previously reported works and provide grounds to analyze more sophisticated sequential sampling strategies .
منابع مشابه
A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملOn Adaptive Resampling Procedures for Sequential Monte Carlo Methods
Sequential Monte Carlo (SMC) methods are a general class of techniques to sample approximately from any sequence of probability distributions. These distributions are approximated by a cloud of weighted samples which are propagated over time using a combination of importance sampling and resampling steps. This article is concerned with the convergence analysis of a class of SMC methods where th...
متن کاملSequential Monte Carlo Samplers
In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...
متن کاملNested Sequential Monte Carlo Methods
We propose nested sequential Monte Carlo (NSMC), a methodology to sample from sequences of probability distributions, even where the random variables are high-dimensional. NSMC generalises the SMC framework by requiring only approximate, properly weighted, samples from the SMC proposal distribution, while still resulting in a correct SMC algorithm. Furthermore, NSMC can in itself be used to pro...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کامل