Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer
نویسندگان
چکیده
A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents.
منابع مشابه
Synthesis and self-assembly of a fluorine- containing amphiphilic graft copolymer bearing a perfluorocyclobutyl aryl ether-based backbone and poly(acrylic acid) side chains†
A series of fluorine-containing amphiphilic graft copolymers consisting of a semi-fluorinated poly(2methyl-1,4-bistrifluorovinyloxybenzene) (PMBTFVB) backbone and hydrophilic poly(acrylic acid) (PAA) side chains was synthesized by the combination of thermal cycloaddition polymerization and atom transfer radical polymerization (ATRP) through the grafting-from strategy. 2-Methyl-1,4-bistrifluorov...
متن کاملReversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds.
The micelle system formed by an amphiphilic triblock copolymer in water serves as a novel scaffold for fluorescence resonance energy transfer as well as light-induced reversible fluorescence modulation for a hydrophobic fluorescent dye.
متن کاملSelf-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micel...
متن کاملAsymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins.
Asymmetric molecules and materials provide an important basis for the organization and function of biological systems. It is well known that, for example, the inner and outer leaflets of biological membranes are strictly asymmetric with respect to lipid composition and distribution. This plays a crucial role for many membrane-related processes like carrier-mediated transport or insertion and or...
متن کاملGrafting of chain-end-functionalized perfluorocyclobutyl (PFCB) aryl ether ionomers onto mesoporous carbon supports.
Water-soluble perfluorocyclobutyl (PFCB) aryl ether ionomers bearing sulfonic acid groups in the main chain and phosphonic acid end groups were prepared and used to modify the surfaces of mesoporous carbon materials containing dispersed zirconia nanoparticles. Ionomer surface grafting occurred via phosphonate bonding onto the zirconia particle surfaces.
متن کامل