CKY-based Convolutional Attention for Neural Machine Translation

نویسندگان

  • Taiki Watanabe
  • Akihiro Tamura
  • Takashi Ninomiya
چکیده

This paper proposes a new attention mechanism for neural machine translation (NMT) based on convolutional neural networks (CNNs), which is inspired by the CKY algorithm. The proposed attention represents every possible combination of source words (e.g., phrases and structures) through CNNs, which imitates the CKY table in the algorithm. NMT, incorporating the proposed attention, decodes a target sentence on the basis of the attention scores of the hidden states of CNNs. The proposed attention enables NMT to capture alignments from underlying structures of a source sentence without sentence parsing. The evaluations on the Asian Scientific Paper Excerpt Corpus (ASPEC) English-Japanese translation task show that the proposed attention gains 0.66 points in BLEU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Refinement for Machine Translation

Existing machine translation decoding algorithms generate translations in a strictly monotonic fashion and never revisit previous decisions. As a result, earlier mistakes cannot be corrected at a later stage. In this paper, we present a translation scheme that starts from an initial guess and then makes iterative improvements that may revisit previous decisions. We parameterize our model as a c...

متن کامل

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation

We introduce a Multi-modal Neural Machine Translation model in which a doubly-attentive decoder naturally incorporates spatial visual features obtained using pre-trained convolutional neural networks, bridging the gap between image description and translation. Our decoder learns to attend to source-language words and parts of an image independently by means of two separate attention mechanisms ...

متن کامل

A Multilayer Convolutional Encoder-Decoder Neural Network for Grammatical Error Correction

We improve automatic correction of grammatical, orthographic, and collocation errors in text using a multilayer convolutional encoder-decoder neural network. The network is initialized with embeddings that make use of character Ngram information to better suit this task. When evaluated on common benchmark test data sets (CoNLL-2014 and JFLEG), our model substantially outperforms all prior neura...

متن کامل

Graph Convolutional Encoders for Syntax-aware Neural Machine Translation

We present a simple and effective approach to incorporating syntactic structure into neural attention-based encoderdecoder models for machine translation. We rely on graph-convolutional networks (GCNs), a recent class of neural networks developed for modeling graph-structured data. Our GCNs use predicted syntactic dependency trees of source sentences to produce representations of words (i.e. hi...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017