MiR-429 reverses epithelial-mesenchymal transition by restoring E-cadherin expression in bladder cancer
نویسندگان
چکیده
Epithelial-mesenchymal transition (EMT) accompanying loss of E-cadherin is important for invasiveness and metastasis of bladder cancer. MicroRNAs (miRs) had been associated with cancer progression and differentiation in several cancers. Our goal is to find out the specific miR which modulates EMT in bladder cancer. Real-time quantitative polymerase chain reaction was used to measure the miRs expression in urothelial cell carcinoma (UCC) cell lines. MiR or siRNA mimics was used to regulate miR and mRNA level respectively. Migration and scratch assays were used to determine the migratory ability. Zymography assay was used to confirm the metalloproteinase activity. Western blotting was used to elucidate the mechanism which regulated by specific miR. MiR-429 was highly expressed in low grade UCC cell lines. Exogenous mimic of miR-429 treatment dramatically inhibited the migratory ability of T24 cells. MiR-429 downstream target ZEB1 was decreased, E-cadherin was restored, and β-catenin was contrarily decreased by exogenous mimic of miR-429 treatment in T24 cells. Cell invasive ability was also inhibited by exogenous mimic of miR-429 treatment through inactivating the MMP-2 activity in T24 cells. E-cadherin protein expression level was inhibited by E-cadherin siRNA accompanied with increasing cell migratory ability when compared with control group in low grade TSGH8301 cells. MiR-429 decreased the cell migratory and invasive abilities through reducing ZEB1 and β-catenin, restoring the E-cadherin expression and inactivation of MMP-2 of UCC cells. MiR-429 might be used as a progression marker of bladder cancer.
منابع مشابه
53BP1 suppresses epithelial–mesenchymal transition by downregulating ZEB1 through microRNA-200b/429 in breast cancer
Epithelial-mesenchymal transition (EMT) is an important mechanism of cancer invasion and metastasis. Although p53 binding protein 1 (53BP1) has been implicated in several biological processes, its function in EMT of human cancers has not yet been reported. Here, we show that 53BP1 negatively regulated EMT by modulating ZEB1 through targeting microRNA (miR)-200b and miR-429. Furthermore, 53BP1 p...
متن کاملmiR-221 facilitates the TGFbeta1-induced epithelial-mesenchymal transition in human bladder cancer cells by targeting STMN1
BACKGROUND Distant metastasis is the major cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) has a critical role in this process. Accumulating evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-221, as oncogenes in several human cancers, was significantly up-regulated in bladder cancers. However, the role of miR-221 in the progression of bladder ...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملMesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line
Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...
متن کاملMiR-429 suppresses the progression and metastasis of osteosarcoma by targeting ZEB1
MiR-429 functions as a tumor suppressor and has been observed in multiple types of cancer, but the effects and mechanisms of miR-429 in osteosarcoma are poorly understood. This study is performed to evaluate the functions of miR-429 in the progression of osteosarcoma. Firstly, the miR-429 expression in osteosarcoma tissues and osteosarcoma cells was detected using real time PCR, and the relatio...
متن کامل