Distributed Subgradient Algorithm for Multi-agent Convex Optimization with Local Constraint Sets

نویسندگان

  • Qingguo Lü
  • Huaqing Li
  • Li Xiao
چکیده

This paper considers a distributed constrained optimization problem, where the objective function is the sum of local objective functions of distributed nodes in a network. The estimate of each agent is restricted to different convex sets. To solve this optimization problem which is not necessarily smooth, we study a novel distributed projected subgradient algorithm for multi-agent optimization with nonidentical constraint sets and switching topologies. The algorithm shows that each agent minimizes its own objective function while communicating information locally with other agents over a network with timevarying topologies but satisfying a standard connectivity property. Under the assumption that the network topology is weightbalanced, the novel distributed subgradient algorithm we proposed is proven to be convergent. Particularly, we suppose the step-size is various, which is different from previous work on multi-agent optimization that makes worst-case assumption with constant step-size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Subgradient Algorithm for Multi-Agent Convex Optimization with Global Inequality and Equality Constraints

In this paper, we present an improved subgradient algorithm for solving a general multi-agent convex optimization problem in a distributed way, where the agents are to jointly minimize a global objective function subject to a global inequality constraint, a global equality constraint and a global constraint set. The global objective function is a combination of local agent objective functions a...

متن کامل

Distributed Mirror Descent over Directed Graphs

In this paper, we propose Distributed Mirror Descent (DMD) algorithm for constrained convex optimization problems on a (strongly-)connected multi-agent network. We assume that each agent has a private objective function and a constraint set. The proposed DMD algorithm employs a locally designed Bregman distance function at each agent, and thus can be viewed as a generalization of the well-known...

متن کامل

Distributed multi-agent optimization with state-dependent communication

Abstract We study distributed algorithms for solving global optimization problems in which the objective function is the sum of local objective functions of agents and the constraint set is given by the intersection of local constraint sets of agents. We assume that each agent knows only his own local objective function and constraint set, and exchanges information with the other agents over a ...

متن کامل

Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization

We consider a distributed multi-agent network system where the goal is to minimize a sum of convex objective functions of the agents subject to a common convex constraint set. Each agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent combines weighted averages of the received iterates with its own iterate, and adjusts the iterate by using subgradi...

متن کامل

Distributed algorithms for solving convex inequalities

In this paper, a distributed subgradient-based algorithm is proposed for continuous-time multi-agent systems to search a feasible solution to convex inequalities. The algorithm involves each agent achieving a state constrained by its own inequalities while exchanging local information with other agents under a time-varying directed communication graph. With the validity of a mild connectivity c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016