Entropy numbers of embeddings of some 2-microlocal Besov spaces
نویسندگان
چکیده
We investigate compactness and asymptotic behaviour of the entropy numbers of embeddings B s1,s1 p1,q1 (R, U) ↪→ B s2,s2 p2,q2 (R, U) . Here B ′ p,q (Rn, U) denotes a 2-microlocal Besov space with a weight given by the distance to a fixed set U ⊂ Rn.
منابع مشابه
Widths of embeddings of 2-microlocal Besov spaces
We consider the asymptotic behaviour of the approximation, Gelfand and Kolmogorov numbers of compact embeddings between 2-microlocal Besov spaces with weights defined in terms of the distance to a d-set U ⊂ R. The sharp estimates are shown in most cases, where the quasi-Banach setting is included.
متن کاملEntropy Numbers of Trudinger–strichartz Embeddings of Radial Besov Spaces and Applications
The asymptotic behaviour of entropy numbers of Trudinger–Strichartz embeddings of radial Besov spaces on Rn into exponential Orlicz spaces is calculated. Estimates of the entropy numbers as well as estimates of entropy numbers of Sobolev embeddings of radial Besov spaces are applied to spectral theory of certain pseudo-differential operators.
متن کاملOn 2-microlocal Spaces with All Exponents Variable
In this paper we study various key properties for 2-microlocal Besov and Triebel–Lizorkin spaces with all exponents variable, including the lifting property, embeddings and Fourier multipliers. We also clarify and improve some statements recently published.
متن کاملHomogeneity property of Besov and Triebel-Lizorkin spaces
We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a homogeneity property for functions with bounded support in the frame of these spaces. As the proof is based on compact embeddings between the studied function spaces we present also some results on the entropy numbers of these embeddings. Moreover, we derive some applications in terms of pointwise mu...
متن کاملAtomic and Molecular Decompositions in Variable Exponent 2-microlocal Spaces and Applications
In this article we study atomic and molecular decompositions in 2-microlocal Besov and Triebel–Lizorkin spaces with variable integrability. We show that, in most cases, the convergence implied in such decompositions holds not only in the distributions sense, but also in the function spaces themselves. As an application, we give a simple proof for the denseness of the Schwartz class in such spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 163 شماره
صفحات -
تاریخ انتشار 2011