Development of a deep neural network derived from contours defined by consensus-based guidelines for automatic target segmentation in hepatocellular carcinoma radiotherapy: A study
نویسنده
چکیده
Hepatocellular carcinoma (HCC) is a leading cause of cancer death in China and around the world. Tumoricidal doses of modern radiation therapy (RT) can now be safely delivered with excellent local control and minimal toxicity. Delivering adequate doses of radiation to the primary tumor, while preserving adjacent healthy organs, depends on accurate target identification. In recent years, different novel machine learning techniques, including artificial intelligence technology, have been exploited in RT with impressive results in automatic image segmentation. If the machine learning algorithms are trained on delineated contours, according to consensus contouring guidelines, it promises greatly reduced interobserver and intraobserver variability in target delineation, thus substantially improving the quality and efficiency of HCC radiotherapy. This study protocol proposes to develop a fully-automated target structure contouring system, which is based on deep neural networks trained on contours delineated according to consensus contouring guidelines in HCC radiotherapy. In addition, the study will evaluate the contouring system’s feasibility and performance during application in normal clinical operations. The study is ongoing (data analysis). 1,2 1,2
منابع مشابه
Development of a deep neural network derived from contours defined by consensus-based guidelines for automatic target segmentation in hepatocellular carcinoma radiotherapy: A study
Hepatocellular carcinoma (HCC) is a leading cause of cancer death in China and around the world. Tumoricidal doses of modern radiation therapy (RT) can now be safely delivered with excellent local control and minimal toxicity. Delivering adequate doses of radiation to the primary tumor, while preserving adjacent healthy organs, depends on accurate target identification. In recent years, differe...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملSegmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network
Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کامل