Emissions from laboratory combustion of wildland fuels: emission factors and source profiles.
نویسندگان
چکیده
Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke forecasts, and source apportionments. This study investigates the evolution of gaseous and particulate emission and combustion efficiency by burning wildland fuels in a laboratory combustion facility. Emission factors for carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxides (NO(x)), PM, light extinction and absorption cross sections, and spectral scattering cross sections specific to flaming and smoldering phases are reported. Emission factors are generally reproducible within +/- 20% during the flaming phase, which, despite its short duration, dominates the carbon emission (mostly in the form of CO2) and the production of light absorption and EC. Higher and more variable emission factors for CO, THC, and PM are found during the smoldering phase, especially for fuels containing substantial moisture. Organic carbon (OC) and EC mass account for a majority (i.e., > 60%) of PM mass; other important elements include potassium, chlorine, and sulfur. Thermal analysis separates the EC into subfractions based on analysis temperature demonstrating that high-temperature EC (EC2; at 700 degrees C) varies from 1% to 70% of PM among biomass burns, compared to 75% in kerosene soot. Despite this, the conversion factor between EC and light absorption emissions is rather consistent across fuels and burns, ranging from 7.8 to 9.6 m2/g EC. Findings from this study should be considered in the development of PM and EC emission inventories for visibility and radiative forcing assessments.
منابع مشابه
A New Strategy for Reduction of Emissions and Enhancement of Performance Characteristics of Dual Fuel Engines at Part Loads
Increasingly restrictive emission regulations and renewed focus on energy efficiency drive the current researches to find alternative fuels and their related better combustion strategies. In this regard, dual fuel engines, in which natural gas fuel is used as a main fuel and diesel fuel is employed as a pilot fuel, have received considerable attention. However, poor fuel utilization efficiencie...
متن کاملMutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires.
BACKGROUND The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. OBJECTIVES We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five b...
متن کاملChemical Composition of Wildland Fire Emissions
Wildland fires are major sources of trace gases and aerosol, and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth’s climate system. The wide variety of pollutants released by wildland fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. Through direct emissions and secondary che...
متن کاملSmoke Emissions from Wildland Fires
Biomass burning is a major source of emissions to the atmosphere. Some of these emissions may change global climate. This paper uses combustion eff iciency as an independent variable for predicting emission factors for, among others, carbon monoxide, carbon dioxide, methane, and particulate matter. Other gases are correlated with the release of carbon monoxide. The release of nitrogen and sulfu...
متن کاملInvestigation of injection timing and different fuels on the diesel engine performance and emissions
Start of fuel injection and fuel type are two important factors affecting engine performance and exhaust emissions in internal combustion engines. In the present study, a one-dimensional computational fluid dynamics solution with GT-Power software is used to simulate a six-cylinder diesel engine to study the performance and exhaust emissions with different injection timing and alternative fuels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 41 12 شماره
صفحات -
تاریخ انتشار 2007