Quantification of Ultrasonic Texture heterogeneity via Volumetric Stochastic Modeling for Tissue Characterization
نویسندگان
چکیده
Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors – which are invariant to affine intensity changes – are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor ∗Corresponding Author: Omar S. Al-Kadi, E-mail: [email protected] Preprint submitted to Medical Image Analysis January 15, 2016 ar X iv :1 60 1. 03 53 1v 1 [ cs .C V ] 1 4 Ja n 20 16 intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization.
منابع مشابه
Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization
Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various sca...
متن کاملDynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...
متن کاملMultidimensional Texture Analysis for Improved Prediction of Ultrasound Liver Tumor Response to Chemotherapy Treatment
The number density of scatterers in tumor tissue contribute to a heterogeneous ultrasound speckle pattern that can be difficult to discern by visual observation. Such tumor stochastic behavior becomes even more challenging if the tumor texture heterogeneity itself is investigated for changes related to response to chemotherapy treatment. Here we define a new tumor texture heterogeneity model fo...
متن کاملA New Method for Characterization of Biological Particles in Microscopic Videos: Hypothesis Testing Based on a Combination of Stochastic Modeling and Graph Theory
Introduction Studying motility of biological objects is an important parameter in many biomedical processes. Therefore, automated analyzing methods via microscopic videos are becoming an important step in recent researches. Materials and Methods In the proposed method of this article, a hypothesis testing function is defined to separate biological particles from artifact and noise in captured v...
متن کاملPreparation and Characterization of ZrO2/ZnO Nanocomposite under Ultrasonic Irradiation via Sol-gel Route
Nanocomposite of ZrO2/ZnO was prepared under ultrasonic irradiation by sol gel process from directly mixing Zirconium and Zinc gels, and the mixture was placed under ultrasonic irradiation for 2 hours then aging time the filtrated composite gel was calcinated at 500°C for 3h in furnace. The precursor sol of zirconium was prepared from an aqueous solution of ZrCl4 and zinc acetate dihydrated was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.03531 شماره
صفحات -
تاریخ انتشار 2016