On rainbow matchings in bipartite graphs

نویسندگان

  • Ron Aharoni
  • Eli Berger
  • Daniel Kotlar
  • Ran Ziv
چکیده

We present recent results regarding rainbow matchings in bipartite graphs. Using topological methods we address a known conjecture of Stein and show that if Kn,n is partitioned into n sets of size n, then a partial rainbow matching of size 2n/3 exists. We generalize a result of Cameron and Wanless and show that for any n matchings of size n in a bipartite graph with 2n vertices there exists a full matching intersecting each matching at most twice. We show that any n matchings of size approximately 3n/2 have a rainbow matching of size n. Finally, we show the uniqueness of the extreme case for a theorem of Drisko and provide a generalization of Drisko’s theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainbow Matchings in Properly Colored Bipartite Graphs

Let G be a properly colored bipartite graph. A rainbow matching of G is such a matching in which no two edges have the same color. Let G be a properly colored bipartite graph with bipartition ( X , Y ) and . We show that if   = G k   3   7 max , 4 k X Y  , then G has a rainbow coloring of size at least 3 4 k       .

متن کامل

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

Rainbow Matchings and Rainbow Connectedness

Aharoni and Berger conjectured that every collection of n matchings of size n+1 in a bipartite graph contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. The conjecture is known to hold when the matchings are m...

متن کامل

Abstract—alexey Pokrovskiy

Alexey Pokrovskiy Aharoni and Berger conjectured [1] that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. When the matchings have size ...

متن کامل

Rainbow matchings and connectedness of coloured graphs

Aharoni and Berger conjectured that every bipartite graph which is the union of n matchings of size n + 1 contains a rainbow matching of size n. This conjecture is a generalization of several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. When the matchings are all edge-disjoint and perfect, an approximate version of this conjecture follows from a theorem of H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016