Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.
نویسندگان
چکیده
Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of synthetic Fe(III) oxides and highly Fe(II) oxide-enriched (18-35 wt % Fe) Atlantic coastal plain sediments. In contrast, long-term (20-60 d) U(VI) reduction was less than 30% in suspensions of six other natural solids with relatively low Fe(III) oxide content (1-5 wt % Fe). Fe(II) sorption site density was severalfold lower on these natural solids (0.2-1.1 Fe(II) nm(-2)) compared tothe synthetic Fe(lII) oxides (1.6-3.2 Fe(II) nm(-2)), which may explain the poor U(VI) reduction in the natural solid-containing systems. Addition of the reduced form of the electron shuttling compound anthrahydroquinone-2,6-disulfonate (AH2DS; final concentration 2.5 mM) to the natural solid suspensions enhanced the rate and extent of U(VI) reduction, suggesting that AH2DS reduced U(VI) at surface sites where reaction of U(VI) with sorbed Fe(II) was limited. This study demonstrates that abiotic, Fe(II)-driven U(VI) reduction is likely to be less efficient in natural soils and sediments than would be inferred from studies with synthetic Fe(III) oxides.
منابع مشابه
Microbial reduction of U(VI) at the solid-water interface.
Microbial (Geobacter sulfurreducens) reduction of 0.1 mM U(VI) in the presence of synthetic Fe(III) oxides and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids, so that U(VI) reduction was governed by reactions at the solid-water interface. The rate and extent...
متن کاملChemical Reduction of U(VI) by Fe(II) at the Solid-Water Interface Using Natural and Synthetic Fe(III) Oxides
B Y O N G H U N J E O N , * , † , | B R I A N A . D E M P S E Y , ‡ W I L L I A M D . B U R G O S , ‡ M A R K O . B A R N E T T , § A N D E R I C E . R O D E N * , † A122 Bevill Building, Department of Biological Sciences, The University of Alabama, Tuscaloosa Alabama 35487-0206, 212 Sackett Building, Department of Civil and Environmental Engineering, The Pennsylvania State University, Universi...
متن کاملReduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
Fe(II) was added to U(VI)-spiked suspensions of hydrous ferric oxide (HFO) or hematite to compare the redox behaviors of uranium in the presence of two different Fe(III) (oxyhydr)oxides. Experiments were conducted with low or high initial sorption density of U(VI) and in the presence or absence of humic acid (HA). About 80% of U(VI) was reduced within 3 days for low sorbed U(VI) conditions, wit...
متن کاملIncorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization.
The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca2+. In spite of the high solubility of U(VI) under these conditions, apprecia...
متن کاملDirect evidence of Fe(V) and Fe(IV) intermediates during reduction of Fe(VI) to Fe(III): a nuclear forward scattering of synchrotron radiation approach.
Identification of unstable high-valent iron species in electron transfer reactions of ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) has been an important challenge in advancing the understanding of the oxidative mechanisms of ferrates. This paper presents the first example of distinguishing various phases differing in the valence state of iron in the solid state reduction of Fe(VI) to Fe(III) oxides at 23...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 39 15 شماره
صفحات -
تاریخ انتشار 2005