Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes

نویسندگان

  • J. Sigüenza
  • S. Mendez
  • D. Ambard
  • F. Dubois
  • F. Jourdan
  • R. Mozul
  • F. Nicoud
چکیده

This paper constitutes an extension of the work of Mendez, Gibaud & Nicoud: An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, Journal of Computational Physics, 256(1): 465-483 (2014), for three-dimensional simulations of deformable membranes under flow. An immersed thick boundary method is used, combining the immersed boundary method with a three-dimensional modeling of the structural part. The immersed boundary method is adapted to unstructured grids for the fluid resolution, using the reproducing kernel particle method. An unstructured finite-volume flow solver for the incompressible Navier-Stokes equations, is coupled with a finiteelement solver for the structure. The validation process relying on a number of test cases proves the efficiency of the method, and its robustness is illustrated when computing the dynamics of a tri-leaflet aortic valve. The proposed immersed thick boundary method is able to tackle applications involving both thin and thick membranes/closed and open membranes, in significantly high Reynolds number flows and highly complex geometries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of the Dynamics of an immersed body in a microchannel with stenosis using the immersed boundary method

In the present study, the combination of lattice Boltzmann and immersed boundary methods is used to simulate the motion and deformation of a flexible body. Deformation of the body is studied in microchannel with stenosis and the effect of the flexibility changes on its deformation is investigated. The obtained results in the present manuscript show that by increasing the elasticity modulus, the...

متن کامل

Simulation of fluid−flexible structure interaction

Systems involving flexible bodies interacting with surrounding fluid flow are commonplace, but are challenging to model numerically on account of their complex geometries and freely moving boundaries. In the present study, we developed an immersed boundary method (IB) for simulating fluid−flexible structure interactions. Our method is based on an efficient Navier-Stokes solver adopting the frac...

متن کامل

An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers

As a step in the development of a numerical procedure able to perform parallel computations of the dynamics of capsules/cells in non-physiological configurations, a numerical method is developed and its validation is described. The fluid-structure interaction problem is solved using an immersed boundary method, adapted to an unstructured finite-volume flow solver thanks to the reproducing kerne...

متن کامل

Simulation of Fluid-Structure and Fluid-Mediated Structure-Structure Interactions in Stokes Regime Using Immersed Boundary Method

The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the ...

متن کامل

Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method

The deformation of an initially spherical capsule, freely suspended in simple shear flow, can be computed analytically in the limit of small deformations [D. Barthés-Biesel, J.M. Rallison, The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech. 113 (1981) 251–267]. Those analytic approximations are used to study the influence of themesh tessellationme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 322  شماره 

صفحات  -

تاریخ انتشار 2016