In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells.
نویسندگان
چکیده
Hyperspectral confocal fluorescence imaging provides the opportunity to obtain individual fluorescence emission spectra in small ( approximately 0.03-microm(3)) volumes. Using multivariate curve resolution, individual fluorescence components can be resolved, and their intensities can be calculated. Here we localize, in vivo, photosynthesis-related pigments (chlorophylls, phycobilins, and carotenoids) in wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Cells were excited at 488 nm, exciting primarily phycobilins and carotenoids. Fluorescence from phycocyanin, allophycocyanin, allophycocyanin-B/terminal emitter, and chlorophyll a was resolved. Moreover, resonance-enhanced Raman signals and very weak fluorescence from carotenoids were observed. Phycobilin emission was most intense along the periphery of the cell whereas chlorophyll fluorescence was distributed more evenly throughout the cell, suggesting that fluorescing phycobilisomes are more prevalent along the outer thylakoids. Carotenoids were prevalent in the cell wall and also were present in thylakoids. Two chlorophyll fluorescence components were resolved: the short-wavelength component originates primarily from photosystem II and is most intense near the periphery of the cell; and the long-wavelength component that is attributed to photosystem I because it disappears in mutants lacking this photosystem is of higher relative intensity toward the inner rings of the thylakoids. Together, the results suggest compositional heterogeneity between thylakoid rings, with the inner thylakoids enriched in photosystem I. In cells depleted in chlorophyll, the amount of both chlorophyll emission components was decreased, confirming the accuracy of the spectral assignments. These results show that hyperspectral fluorescence imaging can provide unique information regarding pigment organization and localization in the cell.
منابع مشابه
Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملVariations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy
Background To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...
متن کاملPhotosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants.
Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, w...
متن کاملTwo-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser.
PURPOSE To record the distribution and spectrum of human retinal pigment epithelial cell lipofuscin (LF) by two-photon-excited fluorescence (TPEF) and confocal laser scanning microscopy. METHODS Ex vivo TPEF imaging of the human retinal pigment epithelium (RPE) of human donor eyes was conducted with a multiphoton laser scanning microscope that employs a femtosecond Ti:sapphire laser as an exc...
متن کاملIn vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells.
The ability to resolve single cells noninvasively in the living retina has important applications for the study of normal retina, diseased retina, and the efficacy of therapies for retinal disease. We describe a new instrument for high-resolution, in vivo imaging of the mammalian retina that combines the benefits of confocal detection, adaptive optics, multispectral, and fluorescence imaging. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 10 شماره
صفحات -
تاریخ انتشار 2008