Transcriptional regulation of solventogenesis in Clostridium acetobutylicum.
نویسندگان
چکیده
Solvent synthesis in Clostridium acetobutylicum is induced in concert with sporulation to counteract the dangerous effects of produced butyric and acetic acids and to provide the cell with sufficient time to complete endospore formation. Cardinal transcription units for butanol and acetone production are the sol and adc operons encoding butyraldehyde/butanol dehydrogenase and coenzyme A transferase as well as acetoacetate decarboxylase. Induction is achieved by a decreased level of DNA supercoiling and the transcription factor Spo0A, possibly in cooperation with other regulatory proteins. A number of other operons is also turned on during this metabolic switch, whose physiological relevance, however, is only partly understood. The recent completion of C. acetobutylicum genome sequencing will pave the way for transcriptional profiling and thus allow comprehension of the coherent regulatory networks of solventogenesis and sporulation.
منابع مشابه
Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.
Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The micr...
متن کاملGenome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum.
Clostridium acetobutylicum is able to switch from acidogenic growth to solventogenic growth. We used phosphate-limited continuous cultures that established acidogenic growth at pH 5.8 and solventogenic growth at pH 4.5. These cultures allowed a detailed transcriptomic study of the switch from acidogenesis to solventogenesis that is not superimposed by sporulation and other growth phase-dependen...
متن کاملTranscriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum.
DNA microarray analysis of Clostridium acetobutylicum was used to examine the genomic-scale gene expression changes during the shift from exponential-phase growth and acidogenesis to stationary phase and solventogenesis. Self-organizing maps were used to identify novel expression patterns of functional gene classes, including aromatic and branched-chain amino acid synthesis, ribosomal proteins,...
متن کاملInactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis.
Central to all clostridia is the orchestration of endospore formation (i.e., sporulation) and, specifically, the roles of differentiation-associated sigma factors. Moreover, there is considerable applied interest in understanding the roles of these sigma factors in other stationary-phase phenomena, such as solvent production (i.e., solventogenesis). Here we separately inactivated by gene disrup...
متن کاملGenomic-Based Identification of the Sporulation Restoring Gene in Degenerate Clostridium Acetobutylicum Strains
There is a renewed interest in the study of Clostridium acetobutylicum due to its applicability in renewable and “greener” production methods for alternative fuels and industrial solvents. Furthermore, due to significant advances in genetic technologies, C. acetobutylicum has ostensibly become a model clostridia for studying other solventogenic and pathogenic clostridia. Of considerable interes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2002