Wavelet estimation of partially linear models

نویسندگان

  • Xiao-Wen Chang
  • Leming Qu
چکیده

A wavelet approach is presented for estimating a partially linear model (PLM). We find an estimator of the PLM by minimizing the square of the l2 norm of the residual vector with penalizing the l1 norm of the wavelet coefficients of the nonparametric component. This approach, an extension of the wavelet approach for nonparametric regression problems, avoids the restrictive smoothness requirements for the nonparametric function of the traditional smoothing approaches for PLM, such as smoothing spline, kernel and piecewise polynomial methods. To solve the optimization problem, we present an efficient descent algorithm based on the necessary and sufficient conditions of the minimum point. This algorithm is similar to the iterative backfitting algorithm but with an exact line search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet-based Bayesian Estimation of Partially Linear Regression Modelswith Long Memory Errors.

In this paper we focus on partially linear regression models with long memory errors, and propose a wavelet-based Bayesian procedure that allows the simultaneous estimation of the model parameters and the nonparametric part of the model. Employing discrete wavelet transforms is crucial in order to simplify the dense variance-covariance matrix of the long memory error. We achieve a fully Bayesia...

متن کامل

Robust estimation and wavelet thresholding in partially linear models

This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l1-pen...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Partial Linear Models

This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l1-pen...

متن کامل

Wavelet Linear Density Estimation for a GARCH Model under Various Dependence Structures

We consider n observations from the GARCH-type model: S = σ2Z, where σ2 and Z are independent random variables. We develop a new wavelet linear estimator of the unknown density of σ2 under four different dependence structures: the strong mixing case, the β- mixing case, the pairwise positive quadrant case and the ρ-mixing case. Its asymptotic mean integrated squared error properties are ...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2004