Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.
نویسندگان
چکیده
Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.
منابع مشابه
Bulk and size-segregated aerosol composition observed during INDOEX 1999: Overview of meteorology and continental impacts
[1] Bulk and size-segregated aerosol samples were collected from the NOAA R/V Ronald H. Brown as it cruised from Cape Town, South Africa, through the Indian Ocean and into the Bay of Bengal and Arabian Sea (February to April 1999; 33 S to 19 N). Throughout the Northern Hemisphere, aerosol loading was greater than in the Southern Hemisphere. Samples collected in air that had passed over India sh...
متن کاملOrganic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning
To better understand the characteristics of biomass burning in the northern Indo-Gangetic Plain (IGP), total suspended particles were collected in a rural site, Lumbini, Nepal, during April 2013 to March 2014 and analyzed for the biomass burning tracers (i.e., levoglucosan, mannosan, vanillic acid). The annual average concentration of levoglucosan was 734± 1043 ng m−3 with the maximum seasonal ...
متن کاملEffect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa
Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of lev...
متن کاملEstimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA)
Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer (SR), we derive aerosol single scattering albedo, 5 ̟ 0,λ , as a function of wavelength, λ. We find that in the near-UV ...
متن کاملAttribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE
Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however , are unable to distinguish one type of absorbing aerosol from another. It is thus 5 instructive to separate total absorption from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science. Processes & impacts
دوره 16 10 شماره
صفحات -
تاریخ انتشار 2014