Survey on Pattern Optimization for Novel Class in MCM for Stream Data Classification
نویسندگان
چکیده
The classification of stream data is somehow difficult. Existing data stream classification techniques assume that total number of classes in the stream is fixed. Therefore, instances belonging to a novel class are misclassified by the existing techniques. Because data streams have endless length, conventional multi pass learning algorithms are not appropriate as they would require infinite storage and training time. Concept-drift occurs in the stream when the underlying concept of the data changes over time. Thus, the classification model must be updated continuously so that it reflects the most recent concept. In this paper we are presenting some efficient research approaches suggested by numerous scholars.
منابع مشابه
Modified Multi-Class Miner using Particle of Swarm Optimization for Stream Data Classification
Multi-class miner is well recognized method for stream data classification. For the process of multi-class miner evaluation of new feature during classification is major problem. The problem of feature evaluation decreases the performance of multi-class miner (MCM). For the improvement of multi-class miner particle of swarm optimization technique is used. Particle of swarm optimization controls...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملFUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کامل