Mechanisms of selenate adsorption on iron oxides and hydroxides.
نویسندگان
چکیده
Selenate (SeO4(2-)) is an oxyanion of environmental importance because of its toxicity to animals and its mobility in the soil environment. It is known that iron(III) oxides and hydroxides are important sorbents for SeO4(2-) in soils and sediments, but the mechanism of selenate adsorption on iron oxides has been the subject of intense debate. Our research employed Extended X-ray absorption fine structure and attenuated total reflectance-Fourier transform infrared spectroscopies to determine SeO4(2-) bonding mechanisms on hematite, goethite, and hydrous ferric oxide (HFO). It was learned that selenate forms only inner-sphere surface complexes on hematite but forms a mixture of outer- and inner-sphere surface complexes on goethite and HFO. This continuum of adsorption mechanisms is strongly affected by both pH and ionic strength. These results suggest that adsorption experiments should be conducted on several different iron oxides and over a wide range of reaction conditions to accurately assess the reactivity of oxyanions on iron oxides.
منابع مشابه
Adsorption mechanism of selenate and selenite on the binary oxide systems.
Removal of selenium oxyanions by the binary oxide systems, Al- or Fe-oxides mixed with X-ray noncrystalline SiO(2), was previously not well understood. This study evaluates the adsorption capacity and kinetics of selenium oxyanions by different metal hydroxides onto SiO(2), and uses X-ray absorption spectroscopy (XAS) to assess the interaction between selenium oxyanions and the sorbents at pH 5...
متن کاملAdsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface.
Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO4(2-) and selenite (SeO3(2-) o...
متن کامل-H2O” Systems Revisited: The Importance of Co-Precipitation
The mechanism of aqueous contaminant removal by elemental iron (Fe 0 ) materials (e.g., in Fe 0 -H2O systems) has been largely discussed in the “iron technology” literature. Two major removal mechanisms are usually discussed: (i) contaminant adsorption onto Fe 0 oxidation products, and (ii) contaminant reduction by Fe 0 , Fe II or H/H2. However, a closer inspection of the chemistry of the Fe 0 ...
متن کاملSorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
Explosives in soils can present environmental problems for military installations. Fine, mobile particles represent the most reactive fraction of the soil and, therefore, are expected to adsorb explosives and potentially facilitate their transport. The objective of this study was to determine the relative significance of phyllosilicate clay, organic matter, and two forms of extractable iron in ...
متن کاملArsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products.
Combination of electrodes, such as aluminum and iron in a single electrochemical cell provide an alternative method for removal of arsenic from water by electrocoagulation. The removal process has been studied with a wide range of arsenic concentration (1-1000 ppm) at different pH (4-10). Analysis of the electrochemically generated by-products by XRD, XPS, SEM/EDAX, FT-IR, and Mössbauer Spectro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 36 7 شماره
صفحات -
تاریخ انتشار 2002