Efficient and Effective KNN Sequence Search with Approximate n-grams
نویسندگان
چکیده
In this paper, we address the problem of finding k-nearest neighbors (KNN) in sequence databases using the edit distance. Unlike most existing works using short and exact ngram matchings together with a filter-and-refine framework for KNN sequence search, our new approach allows us to use longer but approximate n-gram matchings as a basis of KNN candidates pruning. Based on this new idea, we devise a pipeline framework over a two-level index for searching KNN in the sequence database. By coupling this framework together with several efficient filtering strategies, i.e. the frequency queue and the well-known Combined Algorithm (CA), our proposal brings various enticing advantages over existing works, including 1) huge reduction on false positive candidates to avoid large overheads on candidate verifications; 2) progressive result update and early termination; and 3) good extensibility to parallel computation. We conduct extensive experiments on three real datasets to verify the superiority of the proposed framework.
منابع مشابه
Efficient k-nearest neighbor searches for multi-source forest attribute mapping
In this study, we explore the utility of data structures that facilitate efficient nearest neighbor searches for application in multi-source forest attribute prediction. Our trials suggest that the kd-tree in combination with exact search algorithms can greatly reduce nearest neighbor search time. Further, given our trial data, we found that enormous gain in search time efficiency, afforded by ...
متن کاملEfficient In-memory Data Structures for n-grams Indexing
Indexing n-gram phrases from text has many practical applications. Plagiarism detection, comparison of DNA of sequence or spam detection. In this paper we describe several data structures like hash table or B+ tree that could store n-grams for searching. We perform tests that shows their advantages and disadvantages. One of neglected data structure for this purpose, ternary search tree, is deep...
متن کاملEfficient Processing of k Nearest Neighbor Joins using MapReduce
k nearest neighbor join (kNN join), designed to find k nearest neighbors from a dataset S for every object in another dataset R, is a primitive operation widely adopted by many data mining applications. As a combination of the k nearest neighbor query and the join operation, kNN join is an expensive operation. Given the increasing volume of data, it is difficult to perform a kNN join on a centr...
متن کاملLot Streaming in No-wait Multi Product Flowshop Considering Sequence Dependent Setup Times and Position Based Learning Factors
This paper considers a no-wait multi product flowshop scheduling problem with sequence dependent setup times. Lot streaming divide the lots of products into portions called sublots in order to reduce the lead times and work-in-process, and increase the machine utilization rates. The objective is to minimize the makespan. To clarify the system, mathematical model of the problem is presented. Sin...
متن کاملEffective protocols for kNN search on broadcast multi-dimensional index trees
In a wireless mobile environment, data broadcasting provides an efficient way to disseminate data. Via data broadcasting, a server can provide location-based services to a large client population in a wireless environment. Among different location-based services, the k nearest neighbors (kNN) search is important and is used to find the k closest objects to a given point. However, the kNN search...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 7 شماره
صفحات -
تاریخ انتشار 2013