Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania.
نویسندگان
چکیده
Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influence on gold intrinsic activity but more on the apparent reaction rates which are a combination of catalytic activity and diffusion limitations. These are here minimized by using gadolinium-doped titania nanocrystallites as support for gold nanoparticles. This material is obtained by mild hydrolysis of a new Gd(4)TiO(O(i)Pr)(14) bimetallic oxoalkoxide. It leads to enhanced wettability of the < 3 nm gold particles in the tert-butyl hydroperoxide (TBHP)-initiated epoxidation of stilbene in methylcyclohexane; Au/TiO(2):Gd(3+) is in turn as active as the state-of-the-art hydrophobic Au/SiO(2) catalyst. The rate-determining step of this reaction is identified as the gold-catalyzed homolytic decomposition of TBHP generating radicals and initiating the methylcyclohexane-mediated epoxidation of stilbene, yielding a methylcyclohexan-1-ol/trans-stilbene oxide mixture. Methylcyclohexan-1-ol can also be obtained in the absence of the alkene in the gold-catalyzed solvent-free autoxidation of methylcyclohexane, evidencing the catalytic potential of gold nanoparticles for low temperature C-H activation.
منابع مشابه
Highly efficient aerobic oxidation of alkenes over unsupported nanogold.
An octylsilane-stabilized colloidal dispersion of 2 nm crystalline gold nanoparticles is highly active and selective for the aerobic oxidations of stilbene and cyclohexene in methylcyclohexane.
متن کاملEpoxidation of stilbene using supported gold nanoparticles: cumyl peroxyl radical activation at the gold nanoparticle surface.
The catalytic epoxidation of cis-stilbene using cumene as a solvent in the presence of supported gold nanoparticles (AuNP) yields a mixture of cis and trans-stilbene oxides. EPR and product distribution studies support a new mechanistic proposal where oxygen centred radicals activate the AuNP surface and form active surface oxygen species responsible for the epoxidation products.
متن کاملMo-Doped SnO2 Nanoparticles: A Case Study for Selective Epoxidation of Cycloocten
Mo-doped SnO2 nanoparticles were prepared using hydrothermal method. The average grain size obtained by varying calcinations temperature from 160 to 500 oC showed the different sizes. Prepared materials characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). Also the FTIR and the UV–Vis absorptive spectra have been carried out. Mo- doped SnO...
متن کاملSynthesis of Binary Ti-Si Mixed Oxides Nanoparticles with Rutile Structure as Selective Catalyst for Epoxidation of Alkenes
The nanoparticles of Ti-Si mixed oxides (NTSO) with Rutile structure were prepared by sol-gel method in a mixture of alcohol and water as solvent. The solid product was characterized by XRD, FTIR, SEM, TEM, UV, TGA and laser Raman spectroscopy. The catalytic activity of NTSO (5-10 nm) was investigated in the epoxidation of cis stilbene, trans stilbene, and norbornene by using oxidants such as t...
متن کاملDirect aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate.
Ag and Ru nanoparticles stabilized by H5PV2Mo10O40, prepared by a sequence of redox reactions and supported on alpha-alumina, were effective catalysts for the direct aerobic epoxidation of alkenes in the liquid phase.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 39 36 شماره
صفحات -
تاریخ انتشار 2010