Water vapor budget of the Indian monsoon depression

نویسنده

  • TSING-CHANG CHEN
چکیده

Estimations by previous studies show that a minor amount of the Indian monsoon rainfall is contributed by Indian monsoon depressions (IMDs). In contrast, other studies found that approximately half of the summer monsoon rainfall in the northern Indian subcontinent is generated by IMDs. IMDs occur an average of six times during the summer season and provide a crucial water source to the agricultural activity over this region. The large disparity in the estimation of the IMD contribution to the Indian rainfall by previous studies requires a more accurate water vapor budget analysis of the IMD with quality data. For this reason, a composite analysis of the IMD is performed using the ERA-40 reanalysis and four precipitation data sets (the Global Precipitation Climatology Project, the Tropical Rainfall Measuring Mission, the GEOS precipitation index at the Goddard Space Flight Center and surface station observations) for the period of 1979–2002. Important findings of this study are: (i) about 45–55% of the total Indian rainfall is produced by the IMD; (ii) the rainfall maximum in the west–south-west sector of IMDs is largely maintained by convergence of atmospheric water vapor flux. The convergence of water vapor flux is largely coupled with the lower-tropospheric divergent circulation. Thus, the IMD water vapor budget is modulated by the 30–60 and 10–20 d monsoon modes through changes of water vapor convergence/divergence. The magnitude of this modulation on the IMD water vapor budget is close to a quarter of the summer-mean water vapor budget over the Bay of Bengal and north-eastern India.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation

[1] The goal of this paper is to investigate the added value of water isotopic measurements to estimate the relative influence of large‐scale dynamics, convection, and land surface recycling on the Sahelian water budget. To this aim, we use isotope data in the lower tropospheric water vapor measured by the SCIAMACHY and TES satellite instruments and in situ precipitation data from the Global Ne...

متن کامل

Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station

The intraseasonal and interannual characteristics and the vertical distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer profiler (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, ...

متن کامل

Interannual Variation in Indochina Summer Monsoon Rainfall: Possible Mechanism

Indochina is located between two extensively researched components of the Asian monsoon system: the Indian subcontinent and southeast–east Asia. Highly correlated with the National Oceanic and Atmospheric Administration Niño-3 sea surface temperatures, the interannual variation of Indochina monsoon rainfall is caused by a mechanism different from the two aforementioned regions. This mechanism c...

متن کامل

Frictional Moisture Convergence in a Composite Life Cycle of the Madden–Julian Oscillation

A composite life cycle of the Madden–Julian oscillation (MJO) is constructed using an index based on the first two EOFs of the bandpass-filtered (20–80 days) 850-mb zonal wind averaged from 58N to 58S every 2.58 around the equator. Precipitation, 1000-mb convergence, 850-mb wind, and 200-mb wind are composited for the period 1979–95. Water vapor integrated from the surface to 300 mb is composit...

متن کامل

Effects of water table dynamics on regional climate: A case study over east Asian monsoon area

[1] Groundwater is an important component of the hydrologic cycle, and its anomaly will result in variations of soil moisture, water, and energy balances between the land surface and atmosphere, which ultimately influence climate. In this study, we implement a groundwater model into the regional climate model RegCM3, which is called RegCM3_GW, and investigate the effects of water table dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004