Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations
نویسندگان
چکیده
Howard C. Elman1, , David J. Silvester2, , Andrew J. Wathen3, 1 Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA; e-mail: [email protected] 2 Department of Mathematics, University of Manchester, Institute of Science and Technology, Manchester M601QD, UK; e-mail: [email protected] 3 Oxford University, Computing Laboratory, Wolfson Building, Parks Road, Oxford OX13QD, UK; e-mail: [email protected]
منابع مشابه
Preconditioning Steady-State Navier-Stokes Equations with Random Data
We consider the numerical solution of the steady-state Navier–Stokes equations with uncertain data. Specifically, we treat the case of uncertain viscosity, which results in a flow with an uncertain Reynolds number. After linearization, we apply a stochastic Galerkin finite element method, combining standard inf-sup stable Taylor–Hood approximation on the spatial domain (on highly stretched grid...
متن کاملComparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations
To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we comp...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier-Stokes equations
Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for non-symmetric saddle point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents an...
متن کاملILU Preconditioners for Nonsymmetric Saddle-Point Matrices with Application to the Incompressible Navier-Stokes Equations
Motivated by the numerical solution of the linearized incompressible Navier–Stokes equations, we study threshold incomplete LU factorizations for nonsymmetric saddle-point matrices. The resulting preconditioners are used to accelerate the convergence of a Krylov subspace method applied to finite element discretizations of fluid dynamics problems in three space dimensions. The paper presents and...
متن کاملPreconditioners for Generalized Saddle-point Problems Preconditioners for Generalized Saddle-point Problems *
We examine block-diagonal preconditioners and efficient variants of indefinite preconditioners for block two-by-two generalized saddle-point problems. We consider the general, nonsymmetric, nonsingular case. In particular, the (1,2) block need not equal the transposed (2,1) block. Our preconditioners arise from computationally efficient splittings of the (1,1) block. We provide analyses for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 90 شماره
صفحات -
تاریخ انتشار 2002