The walk distances in graphs
نویسنده
چکیده
The walk distances in graphs are defined as the result of appropriate transformations of the ∑∞ k=0(tA) k proximity measures, where A is the weighted adjacency matrix of a graph and t is a sufficiently small positive parameter. The walk distances are graphgeodetic; moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter t approaches its limiting values. We also show that the logarithmic forest distances which are known to generalize the resistance distance and the shortest path distance are a specific subclass of walk distances. On the other hand, the long walk distance is equal to the resistance distance in a transformed graph.
منابع مشابه
On the Embeddability of Random Walk Distances
Analysis of large graphs is critical to the ongoing growth of search engines and social networks. One class of queries centers around node affinity, often quantified by random-walk distances between node pairs, including hitting time, commute time, and personalized PageRank (PPR). Despite the potential of these “metrics,” they are rarely, if ever, used in practice, largely due to extremely high...
متن کاملSimple expressions for the long walk distance
The walk distances in graphs are defined as the result of appropriate transformations of the ∑∞ k=0(tA) k proximity measures, where A is the weighted adjacency matrix of a connected weighted graph and t is a sufficiently small positive parameter. The walk distances are graph-geodetic, moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter ...
متن کاملA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
متن کاملWiener Index of Graphs in Terms of Eccentricities
The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.
متن کاملNew Resistance Distances with Global Information on Large Graphs
We consider the problem that on large random geometric graphs, random walk-based distances between nodes do not carry global information such as cluster structure. Instead, as the graphs become larger, the distances contain mainly the obsolete information of local density of the nodes. Many distances or similarity measures between nodes on a graph have been proposed but none are both proved to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 160 شماره
صفحات -
تاریخ انتشار 2012