On the Dini-Hadamard subdifferential of the difference of two functions
نویسندگان
چکیده
In this paper we first provide a general formula of inclusion for the DiniHadamard ε-subdifferential of the difference of two functions and show that it becomes equality in case the functions are directionally approximately starshaped at a given point and a weak topological assumption is fulfilled. To this end we give a useful characterization of the Dini-Hadamard ε-subdifferential by means of sponges. The achieved results are employed in the formulation of optimality conditions via the Dini-Hadamard subdifferential for cone-constrained optimization problems having the difference of two functions as objective.
منابع مشابه
The Directed Subdifferential of DC Functions
The space of directed sets is a Banach space in which convex compact subsets of Rn are embedded. Each directed set is visualized as a (nonconvex) subset of Rn, which is comprised of a convex, a concave and a mixed-type part. Following an idea of A. Rubinov, the directed subdifferential of a difference of convex (DC) functions is defined as the directed difference of the corresponding embedded c...
متن کاملOn subdifferential in Hadamard spaces
In this paper, we deal with the subdierential concept onHadamard spaces. Flat Hadamard spaces are characterized, and nec-essary and sucient conditions are presented to prove that the subdif-ferential set in Hadamard spaces is nonempty. Proximal subdierentialin Hadamard spaces is addressed and some basic properties are high-lighted. Finally, a density theorem for subdierential set is established.
متن کاملAbout some links between the Dini-Hadamard- like normal cone and the contingent one
The primary goal of this paper is to furnish an alternative description for the contingent normal cone, similar to the one that exists for the Fréchet one, but by using a directional convergence in place of the usual one. In fact, we actually prove that the same description is available not only for the contingent normal cone, but also for the Dini-Hadamard normal cone and the Dini-Hadamard-lik...
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملCharacterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 50 شماره
صفحات -
تاریخ انتشار 2011