Kinetic modelling of serum S100b after traumatic brain injury
نویسندگان
چکیده
BACKGROUND An understanding of the kinetics of a biomarker is essential to its interpretation. Despite this, little kinetic modelling of blood biomarkers can be found in the literature. S100b is an astrocyte related marker of brain injury used primarily in traumatic brain injury (TBI). Serum levels are expected to be the net result of a multi-compartmental process. The optimal sample times for TBI prognostication, and to follow injury development, are unclear. The purpose of this study was to develop a kinetic model to characterise the temporal course of serum S100b concentration after primary traumatic brain injury. METHODS Data of serial serum S100b samples from 154 traumatic brain injury patients in a neurointensive care unit were retrospectively analysed, including only patients without secondary peaks of this biomarker. Additionally, extra-cranial S100b can confound samples earlier than 12 h after trauma and were therefore excluded. A hierarchical, Bayesian gamma variate kinetic model was constructed and the parameters estimated by Markov chain Monte Carlo sampling. RESULTS We demonstrated that S100b concentration changes dramatically over timescales that are clinically important for early prognostication with a peak at 27.2 h (95 % credible interval [25.6, 28.8]). Baseline S100b levels was found to be 0.11 μg/L (95 % credible interval [0.10, 0.12]). CONCLUSIONS Even small differences in injury to sample time may lead to marked changes in S100b during the first days after injury. This must be taken into account in interpretation. The model offers a way to predict the peak and trajectory of S100b from 12 h post trauma in TBI patients, and to identify deviations from this, possibly indicating a secondary event. Kinetic modelling, providing an equation for the peak and projection, may offer a way to reduce the ambiguity in interpretation of, in time, randomly sampled acute biomarkers and may be generally applicable to biomarkers with, in time, well defined hits.
منابع مشابه
Impact of Acute Phase Epigallocatechin-3-gallate Supplementation on Consciousness and S100B Serum Levels in TBI Patients: A Double Blind Randomized Clinical Trial
Background and Aim: Traumatic brain injury is one of the leading causes of mortality and disability in young adults. Epigallocatechin-3-gallate, the antioxidant compound of green tea, has been proposed to have antioxidant and anti-inflammatory properties. This study evaluates the potential effects of epigallocatechin-3-gallate on the early clinical outcome and serum S100B levels (biomarker for ...
متن کاملEffects of minocycline on neurological outcomes in patients with acute traumatic brain injury: a pilot study
Traumatic brain injury (TBI) is a public health problem worldwide. Secondary damage of brain injury begins within a few minutes after the trauma and can last a long time. It can be reversible, unlike primary injury. Therefore, therapeutic intervention can be used. The aims of this study were to assess the effects of minocycline on neurological function and serum S100B protein and neuron-specifi...
متن کاملEffects of minocycline on neurological outcomes in patients with acute traumatic brain injury: a pilot study
Traumatic brain injury (TBI) is a public health problem worldwide. Secondary damage of brain injury begins within a few minutes after the trauma and can last a long time. It can be reversible, unlike primary injury. Therefore, therapeutic intervention can be used. The aims of this study were to assess the effects of minocycline on neurological function and serum S100B protein and neuron-specifi...
متن کاملFunctional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury☆
The S100B protein is an intra-cellular calcium-binding protein that mainly resides in astrocytes in the central nervous system. The serum level of S100B is used as biomarker for the severity of brain damage in traumatic brain injury (TBI) patients. In this study we investigated the relationship between intrinsic resting-state brain connectivity, measured 1-22 days (mean 8 days) after trauma, an...
متن کاملThe Passage of S100B from Brain to Blood Is Not Specifically Related to the Blood-Brain Barrier Integrity
Following brain injury, S100B is released from damaged astrocytes but also yields repair mechanisms. We measured S100B in the cerebrospinal fluid (CSF) and serum (Cobas e411 electrochemiluminescence assay, Roche) longitudinally in a large cohort of patients treated with a ventricular drainage following traumatic brain injury (TBI) or subarachnoid hemorrhage (SAH). Statistical analysis was perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016