Inhibition of HDM2 and activation of p53 by ribosomal protein L23.

نویسندگان

  • Aiwen Jin
  • Koji Itahana
  • Kevin O'Keefe
  • Yanping Zhang
چکیده

The importance of coordinating cell growth with proliferation has been recognized for a long time. The molecular basis of this relationship, however, is poorly understood. Here we show that the ribosomal protein L23 interacts with HDM2. The interaction involves the central acidic domain of HDM2 and an N-terminal domain of L23. L23 and L11, another HDM2-interacting ribosomal protein, can simultaneously yet distinctly interact with HDM2 together to form a ternary complex. We show that, when overexpressed, L23 inhibits HDM2-induced p53 polyubiquitination and degradation and causes a p53-dependent cell cycle arrest. On the other hand, knocking down L23 causes nucleolar stress and triggers translocation of B23 from the nucleolus to the nucleoplasm, leading to stabilization and activation of p53. Our data suggest that cells may maintain a steady-state level of L23 during normal growth; alternating the levels of L23 in response to changing growth conditions could impinge on the HDM2-p53 pathway by interrupting the integrity of the nucleolus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation.

The ribosomal protein L11 binds to and suppresses the E3 ligase function of HDM2, thus activating p53. Despite being abundant as a component of the 60S large ribosomal subunit, L11 does not induce p53 under normal growth conditions. In search of mechanisms controlling L11-HDM2 interaction, we found that the induction of p53 under growth inhibitory conditions, such as low dose of actinomycin D o...

متن کامل

Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26

HDM2 is a p53-specific E3 ubiquitin ligase. Its overexpression leads to excessive inactivation of tumor protein p53, diminishing its tumor suppressor function. HDM2 also affects the cell cycle, apoptosis and tumorigenesis through interacting with other molecules, including several ribosomal proteins. To identify novel HDM2 regulators, we performed a yeast two-hybrid screening using HDM2 as bait...

متن کامل

Regulation of the HDM2-p53 pathway by ribosomal protein L6 in response to ribosomal stress

The HDM2-p53 loop is crucial for monitoring p53 level and human pathologies. Therefore, identification of novel molecules involved in this regulatory loop is necessary for understanding the dynamic regulation of p53 and treatment of human diseases. Here, we characterized that the ribosomal protein L6 binds to and suppresses the E3 ubiquitin ligase activity of HDM2, and subsequently attenuates H...

متن کامل

Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest.

Protein misfolding in the endoplasmic reticulum (ER) triggers a signaling pathway termed the unfolded protein response path-way (UPR). UPR signaling is transduced through the transmembrane ER effectors PKR-like ER kinase (PERK), inositol requiring kinase-1 (IRE-1), and activating transcription factor 6 (ATF6). PERK activation triggers phosphorylation of eIF2alpha leading to repression of protei...

متن کامل

Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress.

Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 17  شماره 

صفحات  -

تاریخ انتشار 2004